Extract photometry from K2 images
Current Version: v1.0
Tested with Python v2.7.3, 2.7.6, 2.7.8
- NumPy (tested with 1.6.2, 1.8.1)
- SciPy (tested with 0.7.0, 0.10.1, 0.14.0)
- AstroPy (for io.fits; tested with 0.4, 0.4.1)
- pyfits (needed to run k2sc).
- Pandas (0.14.1)
- skimage (0.10.0)
- matplotlib / pylab (tested with 1.1.0, 1.3.1)
- photutils
- emcee
- george (requires eigen) complicated install, consult evernote
Running the pipeline on C5 data
-
Download pixel data
-
Collect the fits file meta data
$ cd $K2_ARCHIVE/pixel/ $ scrape_fits_headers $(find C5 -name "*.fits") C5_headers.db
-
Select a output channel to use. Channels 4 and 33 are a good bet.
-
Make the transformation files
$ cd C5 # Must be in this directory to run code $ make_channel_transform.py --help $ make_channel_transform.py 4 C5 ../C5_headers.db ${K2PHOTFILES}/pixeltrans_C5_ch04.h5 ```
-
Inspect the transformation files
from k2phot import channel_transform as ct trans,pnts = ct.read_channel_transform(args.transfn) ct.plot_trans(trans,pnts) phot = k2phot.phot.read_fits(args.fitsfn,'optimum') k2phot.plotting.phot.lightcurve_segments(phot.lc)
-
If statisfied, run the photometric pipeline with. There are two decorrelation algorithms to use, we recommend k2sc
import k2phot.pipeline_k2sc k2phot.pipeline_k2sc( pixfile,lcfile,transfile,splits, debug=debug, tlimits=tlimits, tex=tex, plot_backend=plot_backend, aper_custom=aper_custom, xy=xy, transitParams=transitParams, transitArgs=transitArgs )