Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

Added TopologicalSort.java #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 86 additions & 0 deletions src/main/java/com/rampatra/sorting/topologicalSort.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
// A Java program to print topological sorting of a DAG
import java.io.*;
import java.util.*;

// This class represents a directed graph using adjacency
// list representation
class Graph
{
private int V; // No. of vertices
private LinkedList<Integer> adj[]; // Adjacency List

//Constructor
Graph(int v)
{
V = v;
adj = new LinkedList[v];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList();
}

// Function to add an edge into the graph
void addEdge(int v,int w) { adj[v].add(w); }

// A recursive function used by topologicalSort
void topologicalSortUtil(int v, boolean visited[],
Stack stack)
{
// Mark the current node as visited.
visited[v] = true;
Integer i;

// Recur for all the vertices adjacent to this
// vertex
Iterator<Integer> it = adj[v].iterator();
while (it.hasNext())
{
i = it.next();
if (!visited[i])
topologicalSortUtil(i, visited, stack);
}

// Push current vertex to stack which stores result
stack.push(new Integer(v));
}

// The function to do Topological Sort. It uses
// recursive topologicalSortUtil()
void topologicalSort()
{
Stack stack = new Stack();

// Mark all the vertices as not visited
boolean visited[] = new boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false;

// Call the recursive helper function to store
// Topological Sort starting from all vertices
// one by one
for (int i = 0; i < V; i++)
if (visited[i] == false)
topologicalSortUtil(i, visited, stack);

// Print contents of stack
while (stack.empty()==false)
System.out.print(stack.pop() + " ");
}

// Driver method
public static void main(String args[])
{
// Create a graph given in the above diagram
Graph g = new Graph(6);
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);

System.out.println("Following is a Topological " +
"sort of the given graph");
g.topologicalSort();
}
}
//By Sundaram Dubey