Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

Efficient Partition Map Prediction via Token Sparsification for Fast VVC Intra Coding (MMSP2024)

Notifications You must be signed in to change notification settings

ustc-ivclab/EPM

Repository files navigation

Efficient Partition Map Prediction via Token Sparsification for Fast VVC Intra Coding

Intelligent Visual Lab, University of Science and Technology of China  
MMSP2024

As one of the key aspects of Versatile Video Coding (VVC), the quad-tree with a nested multi-type tree (QTMT) partition structure enhances the rate-distortion (RD) performance but at the cost of extensive computational encoding complexity. To reduce the complexity of QTMT partition in VVC intraframe coding, researchers proposed the partition map-based fast block partitioning algorithm, which achieves advanced encoding time savings and coding efficiency. However, it encounters high inference overhead due to the over-parameterized neural network. To efficiently deploy this algorithm, we first propose a lightweight neural network based on the hierarchical vision transformer that predicts the partition map effectively with restricted computational complexity, thereby reducing the inference complexity uniformly. Next, we introduce token sparsification to select the most informative tokens using a predefined pruning ratio, achieving content-adaptive computation reduction and parallel-friendly inference. Experimental results demonstrate that the proposed method reduces 98.94% FLOPs with a negligible BDBR increase compared to the original methods.

Performance Evaluation

Performance Evaluation

📣 Updates

  • 2024.08.03: Our paper is accepted by MMSP2024 as a oral paper.

🖥️ Requirements

  • Pytorch >= 1.13.1
  • CUDA >= 11.3
  • Other required packages in pip_opt.sh

🏃‍♀️ Inference

Prepare Testing Data:

You can put the JVET CTC test video sequences in the [input_dir] folder.

Testing:

python Inference_QBD.py --C_ratio 0.125 --jobID DySA_C0.125_QP --inputDir [input_dir] --outDir [output_dir]  --batchSize 200 --startSqeID 0 --SeqNum 22 --checkpoints_dir [model_zoo_dir]

The path of output partition map [output_dir] and checkpoints [model_zoo_dir] can be changed.

🚋 Training

Prepare Training Data:

In the experiments, we use video sequences from CDVL with multiple resolutions {3840x2160, 1920x1050, 1280x720} and part of DIV2K image dataset with resolution 1920x1280 to construct the training and validation datasets.

Commands

Example usage:

python Train_QBD_Dy.py --aux_loss --C_ratio 0.0625 --jobID DyLight_SA_C0.0625 --isLuma --post_test --classification --inputDir /data/fengxm/VVC_Intra/ --outDir /model/fengxm/AVS3/pmp_intra/sa --model_type DyLight_SA --lr 5e-4 --dr 20 --epoch 60 --qp 22 --batchSize 1200 --train_num_workers 8 --predID 2 --classification

There are other arguments you may want to change. You can change the hyperparameters using the cmd line.

For example, you can use the following command to train from scratch.

python Train_QBD_Dy.py              \
 --isLuma \
 --post_test \
 --classification \
 --aux_loss \
 --C_ratio                  0.0625  \
 --jobID                    DyLight_SA_C0.0625 \
 --inputDir                 /data/fengxm/VVC_Intra/ \
 --outDir                   /model/fengxm/AVS3/pmp_intra/sa \
 --model_type               DyLight_SA \
 --lr                       5e-4 \
 --dr                       20 \
 --epoch                    60 \
 --qp                       22 \
 --batchSize                1200 \
 --train_num_workers        8 \
 --predID                   2 \
 --classification

🤟 Citation

If you find our work useful for your research, please consider citing the paper and our previous paper:

@article{feng2023partition,
  title={Partition map prediction for fast block partitioning in VVC intra-frame coding},
  author={Feng, Aolin and Liu, Kang and Liu, Dong and Li, Li and Wu, Feng},
  journal={IEEE Transactions on Image Processing},
  year={2023},
  publisher={IEEE},
  volume={32},
  number={},
  pages={2237-2251},
  doi={10.1109/TIP.2023.3266165}}

Contact

If you have any questions, please feel free to reach out at xmfeng2000@mail.ustc.edu.cn.

🔍 Previous Work

Partition Map Prediction for Fast Block Partitioning in VVC Intra-frame Coding

About

Efficient Partition Map Prediction via Token Sparsification for Fast VVC Intra Coding (MMSP2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages