Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

The implementation of DeepIS model in paper 'DeepIS: Susceptibility Estimation on Social Networks'

Notifications You must be signed in to change notification settings

xiawenwen49/DeepIS

Repository files navigation

DeepIS: Susceptibility Estimation on Social Networks (WSDM 2021)

Authors: Wenwen Xia, Yuchen Li, Jun Wu, Shenghong Li

Please contact xiawenwen@sjtu.edu.cn for any questions.

Introduction

Influence diffusion estimation is a crucial problem in social network analysis. Most prior works mainly focus on predicting the total influence spread, i.e., the expected number of influenced nodes given an initial set of active nodes (aka. seeds).

While in this work, we propose the DeepIS model, which leverages graph neural networks (GNNs) for predicting susceptibility, i.e., the probability of being influenced for each node, given seeds.

DeepIS mainly constitute two components/steps when training or making predictions. (1) a coarse-grained step where we estimate each node's susceptibility using features and NNs; (2) a fine-grained step where we aggregate neighbors' coarse-grained susceptibility estimations to compute the fine-grained estimate for each node.
The two modules are trained in an end-to-end manner.

We illustrate the train/evaluate details in the Jupyter Notebook sample_deepis.ipynb.

DeepIS architecture

architecture

Requirements

  • python >= 3.7

  • Dependency

scipy==1.5.0
torch==1.6.0
ipdb==0.13.4
numpy==1.18.5
scikit_learn==0.23.2

Cite us

@inproceedings{deepis_wsdm20,
title={DeepIS: Susceptibility Estimation on Social Networks},
author={Wenwen Xia and Yuchen Li and Jun Wu and Shenghong Li},
booktitle={Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21)}
year={2021}
}

About

The implementation of DeepIS model in paper 'DeepIS: Susceptibility Estimation on Social Networks'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published