This is an implementation of Traffic Inflow and Outflow Forecasting by Modeling Intra- and Inter-Relationship Between Flows (TITS). MR-STN is a novel deep spatio-temporal network framework for traffic inflows and outflows forecasting. We show the generality and superiority of MR-STN by implementing it with four state-of-the-art graph-based deep spatio-temporal models, including STGCN, ASTGCN, STMGCN, and STSGCN.
- mxnet>=1.5.0
- easydict
Use nvcc -V
to check the cuda version and install mxnet with the corresponding version. For example, use pip install mxnet-cu101
to install mxnet for cuda version 10.1.
Please download the data and unzip it in the ./dataset
directory.
- python main.py --rid=1 --mode=stgcn --stack=3 --ed=4 --data=Metro
- python main.py --rid=1 --mode=astgcn --stack=3 --ed=4 --data=Metro
- python main.py --rid=1 --mode=stmgcn --stack=3 --ed=4 --data=Metro
- python main.py --rid=1 --mode=stsgcn --stack=3 --ed=4 --data=Metro
If our paper benefits to your research, please cite our paper using the bitex below:
@article{MRSTN,
title={Traffic Inflow and Outflow Forecasting by Modeling Intra- and Inter-Relationship Between Flows},
author={Zhao, Yiji and Lin, Youfang and Zhang, Yongkai and Wen, Haomin and Liu, Yunxiao and Wu, Hao and Wu, Zhihao and Zhang, Shuaichao and Wan, Huaiyu},
journal={IEEE Transactions on Intelligent Transportation Systems},
volume={23},
number={11},
pages={20202--20216},
year={2022},
publisher={IEEE}
}