Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to content

This is the official repository of the paper: CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations

License

Notifications You must be signed in to change notification settings

zyw-stu/CPA-Enhancer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

13 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations

πŸ“° ArXiv Preprint: Arxiv 2403.11220

βœ… Updates

  • March. 24th, 2024: We have released the CPA-Seg for segmentation tasks of CPA-Enhancer.

πŸš€ Overview

Overall Workflow of the CPA-Enhancer Framework
Overview of the proposed CPA-Enhancer.

Overall Workflow of the CPA-Enhancer Framework
Our proposed content-driven prompt block (CPB).

Abstract : Object detection methods under known single degradations have been extensively investigated. However, existing approaches require prior knowledge of the degradation type and train a separate model for each, limiting their practical applications in unpredictable environments. To address this challenge, we propose a chain-of-thought (CoT) prompted adaptive enhancer, CPA-Enhancer, for object detection under unknown degradations. Specifically, CPA-Enhancer progressively adapts its enhancement strategy under the step-by-step guidance of CoT prompts, that encode degradation-related information. To the best of our knowledge, it’s the first work that exploits CoT prompting for object detection tasks. Overall, CPA-Enhancer is a plug-and-play enhancement model that can be integrated into any generic detectors to achieve substantial gains on degraded images, without knowing the degradation type priorly. Experimental results demonstrate that CPA-Enhancer not only sets the new state of the art for object detection but also boosts the performance of other downstream vision tasks under multiple unknown degradations.

πŸ› οΈ Installation

  • Step0. Download and install Miniconda from the official website.
  • Step1. Create a conda environment and activate it.
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
  • Step4. Install other related packages.
cd CPA_Enhancer
pip install -r ./cpa/requirements.txt

πŸ“ Data Preparation

Synthetic Datasets

  • Step1. Download VOC PASCAL trainval and test data
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
  • Step2. Construct VnA-T ( containing 5 categories, with a total of 8111 images) / VnB-T (containing 10 categories, with a total of 12334 images) from VOCtrainval_06-Nov-2007.tar and VOCtrainval_11-May-2012.tar; Construct VnA-T ( containing 5 categories, with a total of 2734 images) / VnB-T (containing 10 categories, with a total of 3760 images) from VOCtest_06-Nov-2007.tar.

    We also provide a list of image names included in each dataset, which you can find in the cpa/dataSyn/datalist.

# 5 class
target_classes = ['person','car','bus','bicycle','motorbike']
# 10 class
target_classes = ['bicycle','boat','bottle','bus','car','cat','chair','dog','motorbike','person']

Make sure the directory follows this basic VOC structure.

data_vocnorm  (data_vocnorm_10) 	# path\to\vocnorm
β”œβ”€β”€ train   # VnA-T (VnB-T)      
|    β”œβ”€β”€ Annotations
|    |    └──xxx.xml
|    |       ...
|    └── ImageSets
|    |    └──Main
|    |        └──train_voc.txt  # you can find it in cpa\dataSyn\datalist
|    └── JPEGImages
|         └──xxx.jpg
|            ...
β”œβ”€β”€ test  # VnA (VnB)        
|    β”œβ”€β”€ Annotations
|    |    └──xxx.xml
|    |       ...
|    └── ImageSets
|    |    └──Main
|    |        └──test_voc.txt # you can find it in cpa\dataSyn\datalist
|    └── JPEGImages
|         └──xxx.jpg
|            ...
  • Step3. Sythesize degraded datasets from VnA and VnB by executing the following command and restructure them into VOC format.
# Modify the paths in the code to match your actual paths.
# all-in-one setting 
python cpa/dataSyn/data_make_fog.py   		# VF/VF-T 
python cpa/dataSyn/data_make_lowlight.py 	# VD/VD-T/VDB
python cpa/dataSyn/data_make_snow.py 		# VS/VS-T
python cpa/dataSyn/data_make_rain.py 		# VR/VR-T
# one-by-one setting 
python cpa/dataSyn/data_make_fog_hybrid.py		 	# VF-HT
python cpa/dataSyn/data_make_lowlight_hybrid.py 	# VD-HT

Real-world Datasets

  • Step1. Download Exdark and RTTS datasets.
  • Step2. Restructure the RTTS dataset (4322 images) into VOC format, ensuring that the directory conforms to this basic structure.
RTTS          # path\to\RTTS
β”œβ”€β”€ Annotations
|    └──xxx.xml
|       ...
└── ImageSets
|    └──Main
|        └──test_rtts.txt
└── JPEGImages
     └──xxx.jpg
        ...
  • Step3. Similarly, restructure the ExdarkA dataset (containing 5 categories, with a total of 1283 images) and the ExdarkB dataset (containing 10 categories, with a total of 2563 images) into VOC format.
exdark_5 (exdark_10)         #  path\to\ExDarkA (ExDarkB)
β”œβ”€β”€ Annotations
|    └──xxx.xml
|       ...
└── ImageSets
|    └──Main
|        └──test_exdark_5.txt (test_exdark_10.txt) # you can find it in cpa\dataSyn\datalist
└── JPEGImages
     └──xxx.jpg
        ...

🎯 Usage

πŸ“ All-in-One Setting

  • Step 1. Modify the METAINFO in mmdet/datasets/voc.py
METAINFO = {
        'classes': ('person', 'car', 'bus', 'bicycle',  'motorbike'), # 5 classes
        'palette': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192),(197, 226, 255)]
    }
  • Step 2. Modify the voc_classes in mmdet/evaluation/functional/class_names.py
def voc_classes() -> list:
    return [
        'person', 'car', 'bus', 'bicycle',  'motorbike' # 5 classes
    ]
  • Step 3. Modify the num_classes in configs\yolo\cpa_config.py
bbox_head=dict(
        type='YOLOV3Head',
        num_classes=5, # 5 classes
				...
)
  • Step 4. Recompile the code.
cd CPA_Enhancer
pip install -v -e .
  • Step 5. Modify the data_root ,ann_fileand data_prefix in configs\yolo\cpa_config.py to match your actual paths of the used datasets.

The pretrained models and training/testing logs can be found in checkpoint.zip

πŸ”Ή Train

# Train our model from scratch.  
python tools/train.py configs/yolo/cpa_config.py  

πŸ”Ή Test

# you can download our pretrained model for testing 
python tools/test.py configs/yolo/cpa_config.py path/to/checkpoint/xx.pth

πŸ”Ή Demo

# you can download our pretrained model for inference
python demo/cpa_demo.py \
	--inputs ../cpa/testimage  # path to your input images or dictionary
	--model ../configs/yolo/cpa_config.py 
	--weights path/to/checkpoint/xx.pth 
	--out-dir ../cpa/output # output file

πŸ“ One-by-One Setting

For the foggy conditions (containing five categories), the overall process is the same as above (Step1-5).

For the low-light conditions ( containing ten categories ) , You only need to modify a few places as follows (Step1-3).

  • Step 1. Modify the METAINFO in mmdet/datasets/voc.py
# 10 classes
METAINFO = {
        'classes': ('bicycle', 'boat', 'bottle','bus', 'car', 'cat', 'chair','dog','motorbike','person'),
        'palette': [(106, 0, 228), (119, 11, 32), (165, 42, 42), (0, 0, 192),(197, 226, 255),
										(0, 60, 100), (0, 0, 142), (255, 77, 255), (153, 69, 1), (120, 166, 157),]
    }
  • Step 2. Modify the voc_classes in mmdet/evaluation/functional/class_names.py
def voc_classes() -> list:
    return [
        'bicycle', 'boat', 'bottle','bus', 'car', 'cat', 'chair','dog','motorbike','person' # 10 classes
    ]
  • Step 3. Modify the num_classes in configs/yolo/cpa_config.py
bbox_head=dict(
        type='YOLOV3Head',
        num_classes=10, # 10 classes
				...
)

πŸ“Š Results

Quantitative results

Overall Workflow of the CPA-Enhancer Framework
Quantitative comparisons under the all-in-one setting.

Image 1 Image 2

Comparisons in the one-by-one setting under the foggy degradation (left) and low-light degradation (right)

Visual Results

Overall Workflow of the CPA-Enhancer Framework
Visual comparisons of CPA-Enhancer under the all-in-one setting.

πŸ’ Acknowledgments

Special thanks to the creators of mmdetection upon which this code is built, for their valuable work in advancing object detection research.

πŸ”— Citation

If you use this codebase, or CPA-Enhancer inspires your work, we would greatly appreciate it if you could star the repository and cite it using the following BibTeX entry.

@misc{zhang2024cpaenhancer,
      title={CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations}, 
      author={Yuwei Zhang and Yan Wu and Yanming Liu and Xinyue Peng},
      year={2024},
      eprint={2403.11220},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

This is the official repository of the paper: CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages