Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • Dr. Anum Shafiq is currently an associate Professor at the School of Mathematics and Statistics, Nanjing University o... moreedit
Cancer remains one of the world’s leading healthcare issues, and attempts continue not only to find new medicines but also to find better ways of distributing medications. It is harmful and lethal to most of its patients. The need to... more
Cancer remains one of the world’s leading healthcare issues, and attempts continue not only to find new medicines but also to find better ways of distributing medications. It is harmful and lethal to most of its patients. The need to selectively deliver cytotoxic agents to cancer cells, to enhance protection and efficacy, has prompted the implementation of nanotechnology in medicine. The latest findings have found that gold nanomaterials can heal and conquer it because the material is studied such as gold (atomic number 79) which produces a large amount of heat and contribute to the therapy of malignant tumors. The purpose of the present study is to research the consequence of heat transport through blood flow (Casson model) that contains gold particles in a slippery shrinking/stretching curved surface. The mathematical modeling of Casson nanofluid containing gold nanomaterials towards the slippery curved shrinking/stretching surface is simplified by utilizing suitable transformatio...
Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis... more
Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the veloc...
In current investigation, a novel implementation of intelligent numerical computing solver based on multi-layer perceptron (MLP) feed-forward back-propagation artificial neural networks (ANN) with the Levenberg–Marquard algorithm is... more
In current investigation, a novel implementation of intelligent numerical computing solver based on multi-layer perceptron (MLP) feed-forward back-propagation artificial neural networks (ANN) with the Levenberg–Marquard algorithm is provided to interpret heat generation/absorption and radiation phenomenon in unsteady electrically conducting Williamson liquid flow along porous stretching surface. Heat phenomenon is investigated by taking convective boundary condition along with both velocity and thermal slip phenomena. The original nonlinear coupled PDEs representing the fluidic model are transformed to an analogous nonlinear ODEs system via incorporating appropriate transformations. A data set for proposed MLP-ANN is generated for various scenarios of fluidic model by variation of involved pertinent parameters via Galerkin weighted residual method (GWRM). In order to predict the (MLP) values, a multi-layer perceptron (MLP) artificial neural network (ANN) has been developed. There ar...
This article presents the implementation of a numerical solution of bioconvective nanofluid flow. The boundary layer flow (BLF) towards a vertical exponentially stretching plate with combination of heat and mass transfer rate in tangent... more
This article presents the implementation of a numerical solution of bioconvective nanofluid flow. The boundary layer flow (BLF) towards a vertical exponentially stretching plate with combination of heat and mass transfer rate in tangent hyperbolic nanofluid containing microorganisms. We have introduced zero mass flux condition to achieve physically realistic outcomes. Analysis is conducted with magnetic field phenomenon. By using similarity variables, the partial differential equation which governs the said model was converted into a nonlinear ordinary differential equation, and numerical results are achieved by applying the shooting technique. The paper describes and addresses all numerical outcomes, such as for the Skin friction coefficients (SFC), local density of motile microorganisams (LDMM) and the local number Nusselt (LNN). Furthermore, the effects of the buoyancy force number, bioconvection Lewis parameter, bioconvection Rayleigh number, bioconvection Pecelt parameter, ther...
Introduction: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at... more
Introduction: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface. Methods: The two important aspects, Brownian motion and Thermophoresis are considered. Thermal radiation is also included in present model. Based on the heat and mass flux, the Cattaneo-Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model. Results: The results are plotted graphically to see the variations in three main profiles i.e. m...
The aim of this research is mainly concerned with the numerical examination of Darcy-Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by non-linear stretching sheet. A visco-elastic and strictly incompressible... more
The aim of this research is mainly concerned with the numerical examination of Darcy-Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by non-linear stretching sheet. A visco-elastic and strictly incompressible liquid saturates the designated porous medium under the direct influence of the Darcy-Forchheimer model and convective boundary. The magnetic effect is taken uniformly normal to the flow direction. However, the model is bounded to a tiny magnetic Reynolds number for practical applications. Boundary layer formulations are taken into consideration. The so-formulated leading problems are converted into highly nonlinear ordinary problems using effectively modified transformations. The numerical scheme is applied to solve the governing problems. The outcomes stipulate that thermal layer receives significant modification in the incremental direction for augmented values of thermal radiation parameter Rd. Elevation in thermal Biot number γ1 apparently res...
The current research explores incremental effect of thermal radiation on heat transfer improvement corresponds to Darcy–Forchheimer (DF) flow of carbon nanotubes along a stretched rotating surface using RSM. Casson carbon nanotubes’... more
The current research explores incremental effect of thermal radiation on heat transfer improvement corresponds to Darcy–Forchheimer (DF) flow of carbon nanotubes along a stretched rotating surface using RSM. Casson carbon nanotubes’ constructed model in boundary layer flow is being investigated with implications of both single-walled CNTs and multi-walled CNTs. Water and Ethylene glycol are considered a basic fluid. The heat transfer rate is scrutinized via convective condition. Outcomes are observed and evaluated for both SWCNTs and MWCNTs. The Runge–Kutta Fehlberg technique of shooting is utilized to numerically solve transformed nonlinear ordinary differential system. The output parameters of interest are presumed to depend on governing input variables. In addition, sensitivity study is incorporated. It is noted that sensitivity of SFC via SWCNT-Water becomes higher by increasing values of permeability number. Additionaly, sensitivity of SFC via SWCNT-water towards the permeabili...
Features of double stratification on stagnation point flow of Walter’s B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are... more
Features of double stratification on stagnation point flow of Walter’s B nanoliquid driven through Riga surface are examined in the current study. Via solutal stratification, radiation and thermal effects, heat and mass phenomena are evaluated. The novelty of the proposed investigation is focused on the important effect of melting phenomenon and EMHD Lorentz force along with stratification and heat generation over the rheology of the liquid flow. The influence of Brownian and thermophoresis particle deposition is included in transport equations involved in the analysis. Transformation is incorporated by the basic laws of mass, energy and linear momentum to acquire nonlinear differential system of equations. Utilizing Optimal Homotopy Analysis Method through BVPh2.0.0, optimum value of convergence control factors is estimated. Graphical findings for the dimensionless temperature, velocity and concentration for different pertinent parameters are explained. Numerical values of physical interest like skin friction coefficient, local Sherwood number and local Nusselt number are computed and visualized graphically. The heat generation and advanced modified Hartmann number improve the speed of flow. It is also observed that weaker thermal stratification upraises the rate of heat transport, and mass transport rate lessens for stronger mass stratification. In addition, contour graphs of velocity for ratio parameter A describe the accurate perception of flow. The intensity of temperature and concentration field is low owing to double stratification, whereas the stronger radiation corresponds the significantly rise in temperature. Reliability of outcomes assured by means of probable error analysis.
This research article aims to investigate the consequences of binary chemical reaction, thermal radiation, and Soret–Dufour effects on a steady incompressible Darcy–Forchheimer flow of nanofluids. Stretching surface is assumed to drive... more
This research article aims to investigate the consequences of binary chemical reaction, thermal radiation, and Soret–Dufour effects on a steady incompressible Darcy–Forchheimer flow of nanofluids. Stretching surface is assumed to drive the fluid along positive horizontal direction. Brownian motion, and the Thermophoresis are accounted in particular. The governing highly nonlinear system of problems which are advanced version of Navier–Stokes equations are transformed into ordinary differential equations (ODEs) using appropriately adjusted transformations invoking symmetric property of the independent variables. The numerical approach using RK45 in connection with shooting technique is adopted to solve the final equations. Graphical approach is used to interpret the results and the values of important physical quantities are given in tabular data form. Velocity field, temperature distribution and concentration distribution are graphically analyzed for variation in respective fluid pa...
This numerical study aims to interpret the impact of non-linear thermal radiation on magnetohydrodynamic (MHD) Darcy-Forchheimer Casson-Water/Glycerine nanofluid flow due to a rotating disk. Both the single walled, as well as multi... more
This numerical study aims to interpret the impact of non-linear thermal radiation on magnetohydrodynamic (MHD) Darcy-Forchheimer Casson-Water/Glycerine nanofluid flow due to a rotating disk. Both the single walled, as well as multi walled, Carbon nanotubes (CNT) are invoked. The nanomaterial, thus formulated, is assumed to be more conductive as compared to the simple fluid. The properties of effective carbon nanotubes are specified to tackle the onward governing equations. The boundary layer formulations are considered. The base fluid is assumed to be non-Newtonian. The numerical analysis is carried out by invoking the numerical Runge Kutta 45 (RK45) method based on the shooting technique. The outcomes have been plotted graphically for the three major profiles, namely, the radial velocity profile, the tangential velocity profile, and temperature profile. For skin friction and Nusselt number, the numerical data are plotted graphically. Major outcomes indicate that the enhanced Forchh...
This study reveals the characteristics of chemical reaction on Marangoni mixed convective stream towards a penetrable Riga surface. The heat and mass phenomena are analysed within the sight of Dufour and Soret impacts. The administering... more
This study reveals the characteristics of chemical reaction on Marangoni mixed convective stream towards a penetrable Riga surface. The heat and mass phenomena are analysed within the sight of Dufour and Soret impacts. The administering partial differential equations system is converted into three nonlinear ordinary differential equations utilizing appropriately adjusted transformations. The resultant system of highly nonlinear equations is analytically solved by invoking the homotopy analysis method. Thereafter, the convergence of series solutions is discussed. The impact of appropriate parameters on various flow fields is thoroughly explained with the help of graphs and tables. The wall drag coefficient and relevant flux rates are arranged and discussed for dimensionless parameters. The outcomes show that the stronger Dufour effect of liquid causes a notable incremental variation in heat and mass flux, whereas an opposite trend is noted in the heat flux rate for the Soret effect. ...
In this paper, we have investigated thermally stratified MHD flow of an Oldroyd-B fluid over an inclined stretching surface in the presence of heat generation/absorption. Similarity solutions for the transformed governing equations are... more
In this paper, we have investigated thermally stratified MHD flow of an Oldroyd-B fluid over an inclined stretching surface in the presence of heat generation/absorption. Similarity solutions for the transformed governing equations are obtained. The reduced equations are solved numerically using the Runge–Kutta Fehlberg method with shooting technique. The influences of various involved parameters on velocity profiles, temperature profiles, local skin friction, and local Nusselt number are discussed. Numerical values of local skin friction and local Nusselt number are computed. The significant outcomes of the study are that the velocity decreases when the radiation parameter $$R_{d}$$ R d is increased while the temperature profile is increased for higher values of radiation parameter $$R_{d}$$ R d in case of opposing flow, moreover, growth in Deborah number $$\beta_{2}$$ β 2 enhance the velocity and momentum boundary layer. The heat transfer rate is decrease due to magnetic strength ...
In this article, we present the idea of the fuzzy m-bi-ideals in semi-groups and describe their basic algebraic properties. We also develop the forms of the fuzzy m-bi-ideals generated by an element, a subset, and a sub-semi-group of the... more
In this article, we present the idea of the fuzzy m-bi-ideals in semi-groups and describe their basic algebraic properties. We also develop the forms of the fuzzy m-bi-ideals generated by an element, a subset, and a sub-semi-group of the semi-group. Important characterizations of semi-groups and their different types like m-regular semi-groups and m-intraregular semi-groups have been given through demonstrating examples and using properties of fuzzy m-bi-ideals in semi-groups.
This article is concerned with the nanofluid flow in a rotating frame under the simultaneous effects of thermal slip and convective boundary conditions. Arrhenius activation energy is another important aspect of the present study. Flow... more
This article is concerned with the nanofluid flow in a rotating frame under the simultaneous effects of thermal slip and convective boundary conditions. Arrhenius activation energy is another important aspect of the present study. Flow phenomena solely rely on the Darcy–Forchheimer-type porous medium in three-dimensional space to tackle the symmetric behavior of viscous terms. The stretching sheet is assumed to drive the fluid. Buongiorno’s model is adopted to see the features of Brownian diffusion and thermophoresis on the basis of symmetry fundamentals. Governing equations are modeled and transformed into ordinary differential equations by suitable transformations. Solutions are obtained through the numerical RK45-scheme, reporting the important findings graphically. The outputs indicate that larger values of stretching reduce the fluid velocity. Both the axial and transverse velocity fields undergo much decline due to strong retardation produced by the Forchheimer number. The the...
Present communication aims to inspect the entropy optimization, heat and mass transport in Darcy-Forchheimer nanofluid flow surrounded by a non-linearly stretching surface. Navier-Stokes model based governing equations for non-Newtonian... more
Present communication aims to inspect the entropy optimization, heat and mass transport in Darcy-Forchheimer nanofluid flow surrounded by a non-linearly stretching surface. Navier-Stokes model based governing equations for non-Newtonian nanofluids having symmetric components in various terms are considered. Non-linear stretching is assumed to be the driving force whereas influence of thermal radiation, Brownian diffusion, dissipation and thermophoresis is considered. Importantly, entropy optimization is performed using second law of thermodynamics. Governing problems are converted into nonlinear ordinary problems (ODEs) using suitably adjusted transformations. RK-45 based built-in shooting mechanism is used to solve the problems. Final outcomes are plotted graphically. In addition to velocity, temperature, concentration and Bejan number, the stream lines, contour graphs and density graphs have been prepared. For their industrial and engineering importance, results for wall-drag forc...
This paper reports a theoretical study on the magnetohydrodynamic flow and heat exchange of carbon nanotubes (CNTs)-based nanoliquid over a variable thicker surface. Two types of carbon nanotubes (CNTs) are accounted for saturation in... more
This paper reports a theoretical study on the magnetohydrodynamic flow and heat exchange of carbon nanotubes (CNTs)-based nanoliquid over a variable thicker surface. Two types of carbon nanotubes (CNTs) are accounted for saturation in base fluid. Particularly, the single-walled and multi-walled carbon nanotubes, best known as SWCNTs and MWCNTs, are used. Kerosene oil is taken as the base fluid for the suspension of nanoparticles. The model involves the impact of the thermal radiation and induced magnetic field. However, a tiny Reynolds number is assumed to ignore the magnetic induction. The system of nonlinear equations is obtained by reasonably adjusted transformations. The analytic solution is obtained by utilizing a notable procedure called optimal homotopy analysis technique (O-HAM). The impact of prominent parameters, such as the magnetic field parameter, Brownian diffusion, Thermophoresis, and others, on the dimensionless velocity field and thermal distribution is reported gra...
This manuscript describes the marangoni mixed convective flow over a Riga surface is investigated. Heat phenomenon is examined with thermal radiation impact. The governing PDEs are converted into a set of nonlin-ear ODEs using suitable... more
This manuscript describes the marangoni mixed convective flow over a Riga surface is investigated. Heat phenomenon is examined with thermal radiation impact. The governing PDEs are converted into a set of nonlin-ear ODEs using suitable transformations. The governing system is analytically solved invoking the HAM. Convergence of the obtained series solutions is explicitly discussed. Examination of different relevant parameters on the speed and temperature fields are investigated through charts. Friction coefficient and Nusselt number are arranged and talked about for dimensionless rising parameters.
The current article aims to present a numerical analysis of MHD Williamson nanofluid flow maintained to flow through porous medium bounded by a non-linearly stretching flat surface. The second law of thermodynamics was applied to analyze... more
The current article aims to present a numerical analysis of MHD Williamson nanofluid flow maintained to flow through porous medium bounded by a non-linearly stretching flat surface. The second law of thermodynamics was applied to analyze the fluid flow, heat and mass transport as well as the aspects of entropy generation using Buongiorno model. Thermophoresis and Brownian diffusion is considered which appears due to the concentration and random motion of nanoparticles in base fluid, respectively. Uniform magnetic effect is induced but the assumption of tiny magnetic Reynolds number results in zero magnetic induction. The governing equations (PDEs) are transformed into ordinary differential equations (ODEs) using appropriately adjusted transformations. The numerical method is used for solving the so-formulated highly nonlinear problem. The graphical presentation of results highlights that the heat flux receives enhancement for augmented Brownian diffusion. The Bejan number is found t...
The present article is devoted to examine the significance of double stratification in third grade stagnation point flow towards a radiative stretching cylinder. The stagnation point is discussed categorically. Analysis is scrutinized in... more
The present article is devoted to examine the significance of double stratification in third grade stagnation point flow towards a radiative stretching cylinder. The stagnation point is discussed categorically. Analysis is scrutinized in the presence of Thermophoresis, Brownian diffusion, double stratification and heat source/sink. Suitable typical transformations are used to drive the system of ordinary differential equation. The governing system is subjected to optimal homotopy analysis method (OHAM) for convergent series solutions. The impact of pertinent fluid parameters on the velocity field, temperature distribution and concentration of the nanoparticles is shown graphically. Numerical data is compiled in tabulare form for skin friction, Nusselt and Sherwood numbers to analyze the variation caused by the present model and to see the impact for industrial and engineering point of view.
The proposed investigation concerns the impact of inclined magnetohydrodynamics (MHD) in a Casson axisymmetric Marangoni forced convective flow of nanofluids. Axisymmetric Marangoni convective flow has been driven by concentration and... more
The proposed investigation concerns the impact of inclined magnetohydrodynamics (MHD) in a Casson axisymmetric Marangoni forced convective flow of nanofluids. Axisymmetric Marangoni convective flow has been driven by concentration and temperature gradients due to an infinite disk. Brownian motion appears due to concentration of the nanosize metallic particles in a typical base fluid. Thermophoretic attribute and heat source are considered. The analysis of flow pattern is perceived in the presence of certain distinct fluid parameters. Using appropriate transformations, the system of Partial Differential Equations (PDEs) is reduced into non-linear Ordinary Differential Equations (ODEs). Numerical solution of this problem is achieved invoking Runge–Kutta fourth-order algorithm. To observe the effect of inclined MHD in axisymmetric Marangoni convective flow, some suitable boundary conditions are incorporated. To figure out the impact of heat/mass phenomena on flow behavior, different ph...

And 24 more