Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
לדלג לתוכן

אלגוריתם אמצע הריבוע

מתוך ויקיפדיה, האנציקלופדיה החופשית
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך מחפש מקורות
רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

אמצע הריבוע הוא אלגוריתם פרימיטיבי שמשמש ליצירת מספרים פסאודו אקראיים על בסיס מספר "זרע" ממנו מתחילה יצירת המספרים.

האלגוריתם נחשב לשיטה גרועה למדי, שכן בשלב כלשהו יתקבל שוב מספר שכבר נכלל ברשימה והיא תתחיל לחזור על עצמה. מכאן שהתפלגות המספרים ברשימה המתקבלת אינה אקראית ולכן לא מדובר בשיטה שמייצרת רשימה פסאודו אקראית של ממש[1]. עם זאת השיטה פשוטה, ומשמשת דוגמה טובה לשימוש במספר "זרע" ליצירת רשימה פסאודו אקראית. בנוסף, שימוש בזרעים ספציפיים מניב רשימה ארוכה לפני שמתקבל מספר שכבר היה, ואם אין צורך במספרים פסאודו אקראיים רבים השיטה טובה די הצורך.

האלגוריתם הוא להעלות את המספר הקודם בריבוע, ולבחור את הספרות האמצעיות של התוצאה בתור המספר הבא.

דוגמה לבחירת מספר פסאודו אקראי בעל 4 ספרות
זרע 3237
3237 בריבוע זה 10,478,169
לכן השלב הבא הוא הספרות אמצעיות של 10,478,169, שהן 4781
4781 בריבוע זה 22,857,961
לכן השלב הבא הוא 8579
וחוזר חלילה.

כך הזרע קובע באופן דטרמיניסטי לחלוטין רשימה אינסופית של מספרים, מבלי שיהיה צורך לייצר את הרשימה מראש.

על מנת למנוע דעיכה של הריבועים למספר קטן מ-10,000,000, אם המספר הבא קטן מ-1,000 מוסיפים ספרה קבועה בסיום המספר הבא, למשל את הספרה האחרונה של המספר הקודם, על מנת למנוע דעיכה של הריבועים למספר קטן מ-10,000,000. דעיכה כזו פירושה שיתקבלו מספרים שאינם בני 4 ספרות, בניגוד לדרישה מהאלגוריתם.

לדוגמה 9384 בריבוע זה 88,059,456
הספרות האמצעיות הן 0594
מסיטים את המספר ספרה לשמאל, ומוסיפים 9, שהוא הספרה הראשונה של המספר הקודם
כך שהמספר הבא הוא 9594

קיימות שיטות נוספות לפתרון סוגיה זו.

הערות שוליים

[עריכת קוד מקור | עריכה]
  1. ^ Donald E. Knuth, The art of computer programming, Vol. 2, Seminumerical algorithms, 2nd edn. (Reading, Mass.: Addison-Wesley, 1981), ch. 3, section 3.1.