ממד (אלגברה ליניארית)
ערך מחפש מקורות
| ||
ערך מחפש מקורות | |
באלגברה ליניארית, הממד של מרחב וקטורי הוא מספר האיברים בבסיס של המרחב. כלומר, הממד שווה למספר הפרמטרים החופשיים הנחוצים לתאר כל וקטור במרחב.
הגדרה
[עריכת קוד מקור | עריכה]יהי מרחב וקטורי מעל שדה עם בסיס בגודל . המספר נקרא הממד של ומסומן: .
כשרוצים לציין את התלות בשדה הבסיס מסמנים , ולפעמים גם .
הסבר
[עריכת קוד מקור | עריכה]המימד מכליל את המספרים המוכרים אינטואיטיבית מן המרחבים האוקלידיים הראשונים: הקו הישר הוא חד-ממדי, המישור דו-ממדי, והמרחב המוגדר לפי אורך, רוחב וגובה הוא תלת-ממדי. כעוצמה של קבוצה, המימד הוא מספר טבעי (לרבות אפס), או עוצמה אינסופית. למימד מהאלגברה הליניארית יש הכללות לתחומים נוספים במתמטיקה.
תכונות
[עריכת קוד מקור | עריכה]כאשר המרחב הווקטורי נפרש על ידי קבוצה סופית של איברים, המימד שלו מעל שדה נתון, מאפיין אותו באופן מלא:
- כל שני מרחבים וקטוריים בעלי אותו מימד סופי מעל אותו שדה הם איזומורפיים זה לזה.
- המרחב היחיד ממימד 0 הוא מרחב האפס, הכולל את וקטור האפס בלבד.
- אם מרחב וקטורי ממימד סופי ו- תת-מרחב של ומתקיים אז . כלומר, תת־מרחב מאותו מימד של המרחב המקורי, שווה למימד המקורי.
- המימד של סכום ישר של מרחבים הוא סכום הממדים.
- המימד של המכפלה הטנזורית שווה למכפלת הממדים.
- המימד של מרחב ההעתקות הליניאריות שווה למכפלת הממדים של המרחבים המעורבים.
- המימד של מרחב הווקטורים שווה ל-, והמימד של אלגברת המטריצות הוא .
משפטים
[עריכת קוד מקור | עריכה]משפט הממדים קושר את המימד של סכום וחיתוך תת-מרחבים: אם , אז . זאת בהתאם לעיקרון ההכלה וההדחה.
אם מרחב וקטורי מעל שדה שיש לו תת-שדה , אז מרחב וקטורי מעל , והממדים מקיימים . בפרט, אם שדות, אז . עובדה בסיסית זו מאפשרת להסיק מספר תשובות לבעיות מפורסמות של ימי קדם, למשל: אי אפשר לקבל מספרים מסוימים על ידי פעולות של הוצאת שורש ריבועי, וזו הסיבה לכך שלא ניתן לבנות את השורש השלישי של 2, את הזווית בת 20 מעלות, או את השורש השביעי של היחידה.
קישורים חיצוניים
[עריכת קוד מקור | עריכה]- ד"ר עליזה מלק – הגדרה של בסיס ומימד, סרטון בערוץ "ב"הטכניון מלמדים"", באתר יוטיוב (אורך: 17:04)
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |