Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.00382.html
   My bibliography  Save this paper

Adventures in Demand Analysis Using AI

Author

Listed:
  • Philipp Bach
  • Victor Chernozhukov
  • Sven Klaassen
  • Martin Spindler
  • Jan Teichert-Kluge
  • Suhas Vijaykumar

Abstract

This paper advances empirical demand analysis by integrating multimodal product representations derived from artificial intelligence (AI). Using a detailed dataset of toy cars on \textit{Amazon.com}, we combine text descriptions, images, and tabular covariates to represent each product using transformer-based embedding models. These embeddings capture nuanced attributes, such as quality, branding, and visual characteristics, that traditional methods often struggle to summarize. Moreover, we fine-tune these embeddings for causal inference tasks. We show that the resulting embeddings substantially improve the predictive accuracy of sales ranks and prices and that they lead to more credible causal estimates of price elasticity. Notably, we uncover strong heterogeneity in price elasticity driven by these product-specific features. Our findings illustrate that AI-driven representations can enrich and modernize empirical demand analysis. The insights generated may also prove valuable for applied causal inference more broadly.

Suggested Citation

  • Philipp Bach & Victor Chernozhukov & Sven Klaassen & Martin Spindler & Jan Teichert-Kluge & Suhas Vijaykumar, 2024. "Adventures in Demand Analysis Using AI," Papers 2501.00382, arXiv.org.
  • Handle: RePEc:arx:papers:2501.00382
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.00382
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imke Reimers & Joel Waldfogel, 2021. "Digitization and Pre-purchase Information: The Causal and Welfare Impacts of Reviews and Crowd Ratings," American Economic Review, American Economic Association, vol. 111(6), pages 1944-1971, June.
    2. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    5. Sven Klaassen & Jan Teichert-Kluge & Philipp Bach & Victor Chernozhukov & Martin Spindler & Suhas Vijaykumar, 2024. "DoubleMLDeep: Estimation of Causal Effects with Multimodal Data," Papers 2402.01785, arXiv.org.
    6. Ariel Pakes, 2003. "A Reconsideration of Hedonic Price Indexes with an Application to PC's," American Economic Review, American Economic Association, vol. 93(5), pages 1578-1596, December.
    7. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    8. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    9. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    10. Patrick Bajari & Zhihao Cen & Victor Chernozhukov & Manoj Manukonda & Jin Wang & Ramon Huerta & Junbo Li & Ling Leng & George Monokroussos & Suhas Vijaykunar & Shan Wan, 2023. "Hedonic prices and quality adjusted price indices powered by AI," CeMMAP working papers 08/23, Institute for Fiscal Studies.
    11. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    2. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    3. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    4. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    5. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    6. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    7. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    8. Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
    9. Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Keyon Vafa & Susan Athey & David M. Blei, 2024. "Estimating Wage Disparities Using Foundation Models," Papers 2409.09894, arXiv.org.
    11. Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
    12. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    13. Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    14. Dario Sansone & Anna Zhu, 2023. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
    15. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
    16. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    17. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    18. Maximilian Maurice Gail & Phil-Adrian Klotz, 2021. "The Impact of the Agency Model on E-book Prices: Evidence from the UK," MAGKS Papers on Economics 202111, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    20. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.00382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.