Volatility estimators based on daily price ranges versus the realized range
Author
Abstract
Suggested Citation
DOI: 10.1080/09603107.2011.610739
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Martens, Martin & van Dijk, Dick, 2007.
"Measuring volatility with the realized range,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
- Martens, M.P.E. & van Dijk, D.J.C., 2006. "Measuring volatility with the realized range," Econometric Institute Research Papers EI 2006-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Wiggins, James B, 1991. "Empirical Tests of the Bias and Efficiency of the Extreme-Value Variance Estimator for Common Stocks," The Journal of Business, University of Chicago Press, vol. 64(3), pages 417-432, July.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Jinghong Shu & Jin E. Zhang, 2006. "Testing range estimators of historical volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 297-313, March.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Joshy Jacob & Vipul, 2008. "Estimation and forecasting of stock volatility with range‐based estimators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(6), pages 561-581, June.
- Kim Christensen & Mark Podolskij & Mathias Vetter, 2009.
"Bias-correcting the realized range-based variance in the presence of market microstructure noise,"
Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
- Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2006. "Bias-Correcting the Realized Range-Based Variance in the Presence of Market Microstructure Noise," Technical Reports 2006,52, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Turan G. Bali & David Weinbaum, 2005. "A comparative study of alternative extreme‐value volatility estimators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 873-892, September.
- Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011.
"Ultra high frequency volatility estimation with dependent microstructure noise,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
- Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
- Yacine Ait-Sahalia & Per A. Mykland & Lan Zhang, 2005. "Ultra High Frequency Volatility Estimation with Dependent Microstructure Noise," NBER Working Papers 11380, National Bureau of Economic Research, Inc.
- Li, Hongquan & Hong, Yongmiao, 2011. "Financial volatility forecasting with range-based autoregressive volatility model," Finance Research Letters, Elsevier, vol. 8(2), pages 69-76, June.
- Petko S. Kalev & Huu Nhan Duong, 2008. "A test of the Samuelson Hypothesis using realized range," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 680-696, July.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Marsh, Terry A. & Rosenfeld, Eric R., 1986. "Non-trading, market making, and estimates of stock price volatility," Journal of Financial Economics, Elsevier, vol. 15(3), pages 359-372, March.
- Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- Karim Bannouh & Dick van Dijk & Martin Martens, 2009. "Range-Based Covariance Estimation Using High-Frequency Data: The Realized Co-Range -super-," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 341-372, Fall.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
- Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
- Kunitomo, Naoto, 1992. "Improving the Parkinson Method of Estimating Security Price Volatilities," The Journal of Business, University of Chicago Press, vol. 65(2), pages 295-302, April.
- Igor Kliakhandler, 2007. "Execution edge of pit traders and intraday price ranges of soft commodities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 343-350.
- Vipul & Joshy Jacob, 2007. "Forecasting performance of extreme‐value volatility estimators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(11), pages 1085-1105, November.
- Perry Sadorsky, 2005. "Stochastic volatility forecasting and risk management," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 121-135.
- Manabu Asai & Angelo Unite, 2010. "General asymmetric stochastic volatility models using range data: estimation and empirical evidence from emerging equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 20(13), pages 1041-1049.
- Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Riza Demirer & Konstantinos Gkillas & Christos Kountzakis & Amaryllis Mavragani, 2020. "Risk Appetite and Jumps in Realized Correlation," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
- Vortelinos, Dimitrios I., 2014. "Optimally sampled realized range-based volatility estimators," Research in International Business and Finance, Elsevier, vol. 30(C), pages 34-50.
- Vortelinos, Dimitrios I., 2016. "Incremental information of stock indicators," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 79-97.
- Tao, Qizhi & Wei, Yu & Liu, Jiapeng & Zhang, Ting, 2018. "Modeling and forecasting multifractal volatility established upon the heterogeneous market hypothesis," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 143-153.
- Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
- Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
- Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
- Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013.
"On the predictability of stock prices: A case for high and low prices,"
Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
- Massimiliano Caporin & Angelo Ranaldo & Paolo Santucci de Magistris, 2011. "On the Predictability of Stock Prices: A Case for High and Low Prices," "Marco Fanno" Working Papers 0136, Dipartimento di Scienze Economiche "Marco Fanno".
- Massimiliano Caporin & Angelo Ranaldo, 2011. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers 2011-11, Swiss National Bank.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
- I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Aris Kartsaklas, 2018. "Trader Type Effects On The Volatility‐Volume Relationship Evidence From The Kospi 200 Index Futures Market," Bulletin of Economic Research, Wiley Blackwell, vol. 70(3), pages 226-250, July.
- Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
- Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
- Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
- Sutton, Maxwell & Vasnev, Andrey L. & Gerlach, Richard, 2019. "Mixed interval realized variance: A robust estimator of stock price volatility," Econometrics and Statistics, Elsevier, vol. 11(C), pages 43-62.
- Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
- repec:wyi:journl:002128 is not listed on IDEAS
- Martens, Martin & van Dijk, Dick, 2007.
"Measuring volatility with the realized range,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
- Martens, M.P.E. & van Dijk, D.J.C., 2006. "Measuring volatility with the realized range," Econometric Institute Research Papers EI 2006-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
- Bhaumik, S. & Karanasos, M. & Kartsaklas, A., 2016. "The informative role of trading volume in an expanding spot and futures market," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 24-40.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
- Haibin Xie & Shouyang Wang, 2018. "Timing the market: the economic value of price extremes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-24, December.
- Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:22:y:2012:i:3:p:215-229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.