R2 bounds for predictive models: what univariate properties tell us about multivariate predictability
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- James Mitchell & Donald Robertson & Stephen Wright, 2019. "R2 Bounds for Predictive Models: What Univariate Properties Tell us About Multivariate Predictability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 681-695, October.
References listed on IDEAS
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013.
"A New Model of Trend Inflation,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
- Joshua C C Chan & Gary Koop & Simon M Potter, 2012. "A New Model of Trend Inflation," CAMA Working Papers 2012-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chan, Joshua & Koop, Gary & Potter, Simon, 2012. "A new model of trend inflation," MPRA Paper 39496, University Library of Munich, Germany.
- Chan, Joshua & Koop, Gary & Potter, Simon, 2012. "A New Model Of Trend Inflation," SIRE Discussion Papers 2012-12, Scottish Institute for Research in Economics (SIRE).
- Joshua Chan & Gary Koop & Simon Potter, 2012. "A New Model of Trend Inflation," Working Papers 1202, University of Strathclyde Business School, Department of Economics.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
- Frank Smets & Rafael Wouters, 2007.
"Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,"
American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
- Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 722, European Central Bank.
- Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
- Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Lars Peter Hansen & Thomas J. Sargent, 2013. "Recursive Models of Dynamic Linear Economies," Economics Books, Princeton University Press, edition 1, number 10141.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
- Mihaela-Eugenia VASILACHE, 2018. "Forecasting the Trend of Art Market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 6(1), pages 82-93, June.
- repec:wrk:wrkemf:35 is not listed on IDEAS
- Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020.
"Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
- Bo Zhang & Joshua C.C. Chan & Jamie L. Cross, 2018. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," CAMA Working Papers 2018-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- repec:wrk:wrkemf:24 is not listed on IDEAS
- Tommaso Proietti, 2021.
"Predictability, real time estimation, and the formulation of unobserved components models,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 433-454, April.
- Tommaso Proietti, 2019. "Predictability, Real Time Estimation, and the Formulation of Unobserved Components Models," CEIS Research Paper 455, Tor Vergata University, CEIS, revised 22 Mar 2019.
- Julien Champagne & Guillaume Poulin‐Bellisle & Rodrigo Sekkel, 2020. "Introducing the Bank of Canada staff economic projections database," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 114-129, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- McNeil, James, 2023.
"Monetary policy and the term structure of inflation expectations with information frictions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
- Jmaes McNeil, 2020. "Monetary policy and the term structure of Inflation expectations with information frictions," Working Papers daleconwp2020-07, Dalhousie University, Department of Economics.
- Luis Uzeda, 2022.
"State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models,"
Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53,
Emerald Group Publishing Limited.
- Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
- Luis Uzeda, 2018. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Staff Working Papers 18-14, Bank of Canada.
- Behera, Harendra Kumar & Patra, Michael Debabrata, 2022. "Measuring trend inflation in India," Journal of Asian Economics, Elsevier, vol. 80(C).
- Alex, Dony, 2021. "Anchoring of inflation expectations in large emerging economies," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Francesco Bianchi & Giovanni Nicolo & Dongho Song, 2023.
"Inflation and Real Activity over the Business Cycle,"
Finance and Economics Discussion Series
2023-038, Board of Governors of the Federal Reserve System (U.S.).
- Francesco Bianchi & Giovanni Nicolò & Dongho Song, 2023. "Inflation and Real Activity over the Business Cycle," NBER Working Papers 31075, National Bureau of Economic Research, Inc.
- De Schryder, Selien & Peersman, Gert & Wauters, Joris, 2020.
"Wage indexation and the monetary policy regime,"
Journal of Macroeconomics, Elsevier, vol. 63(C).
- Selien De Schryder & Gert Peersman & Joris Wauters, 2014. "Wage Indexation And The Monetary Policy Regime," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 14/892, Ghent University, Faculty of Economics and Business Administration.
- Selien De Schryder & Gert Peersman & Joris Wauters, 2014. "Wage Indexation and the Monetary Policy Regime," CESifo Working Paper Series 5107, CESifo.
- Patrick C. Higgins, 2014. "GDPNow: A Model for GDP \"Nowcasting\"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
- Yunjong Eo & Luis Uzeda & Benjamin Wong, 2023.
"Understanding trend inflation through the lens of the goods and services sectors,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 751-766, August.
- Yunjong Eo & Luis Uzeda & Benjamin Wong, 2020. "Understanding Trend Inflation Through the Lens of the Goods and Services Sectors," Staff Working Papers 20-45, Bank of Canada.
- Yunjong Eo & Luis Uzeda & Benjamin Wong, 2023. "Understanding Trend Inflation Through the Lens of the Goods and Services Sectors," Discussion Paper Series 2301, Institute of Economic Research, Korea University.
- Yunjong Eo & Luis Uzeda & Benjamin Wong, 2022. "Understanding trend inflation through the lens of the goods and services sectors," CAMA Working Papers 2022-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- James M. Nason & Gregor W. Smith, 2021.
"Measuring the slowly evolving trend in US inflation with professional forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
- James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
- James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Qazi Haque, 2022.
"Monetary Policy, Inflation Target, and the Great Moderation: An Empirical Investigation,"
International Journal of Central Banking, International Journal of Central Banking, vol. 18(4), pages 1-52, October.
- Qazi Haque, 2017. "Monetary Policy, Inflation Target and the Great Moderation: An Empirical Investigation," School of Economics and Public Policy Working Papers 2017-13, University of Adelaide, School of Economics and Public Policy.
- Qazi Haque, 2019. "Monetary Policy, Inflation Target and the Great Moderation: An Empirical Investigation," Economics Discussion / Working Papers 19-10, The University of Western Australia, Department of Economics.
- Qazi Haque, 2019. "Monetary policy, inflation target and the great moderation: An empirical investigation," CAMA Working Papers 2019-44, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022.
"A Model of the Fed's View on Inflation,"
The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
- Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2017. "A Model of the Fed’s View on Inflation," Economic Research Papers 269087, University of Warwick - Department of Economics.
- Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2020. "A Model of the Fed's View on Inflation," Papers 2006.14110, arXiv.org.
- Thomas Hasenzagl & Fillipo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2018. "A model of the FED's view on inflation," Working Papers hal-03458456, HAL.
- Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2017. "A Model of the Fed’s View on Inflation," The Warwick Economics Research Paper Series (TWERPS) 1145, University of Warwick, Department of Economics.
- Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2018. "A model of FED'S view on inflation," Documents de Travail de l'OFCE 2018-03, Observatoire Francais des Conjonctures Economiques (OFCE).
- Reichlin, Lucrezia & Hasenzagl, Thomas & Pellegrino, Filippo & Ricco, Giovanni, 2018. "A Model of the Fed's View on Inflation," CEPR Discussion Papers 12564, C.E.P.R. Discussion Papers.
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ben Zeev, Nadav, 2018.
"What can we learn about news shocks from the late 1990s and early 2000s boom-bust period?,"
Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 94-105.
- Nadav Ben Zeev, 2015. "WHAT CAN WE LEARN ABOUT NEWS SHOCKS FROM THE LATE 1990s AND EARLY 2000s BOOM-BUST PERIOD?," Working Papers 1501, Ben-Gurion University of the Negev, Department of Economics.
- Christian Kascha & Francesco Ravazzolo, 2010.
"Combining inflation density forecasts,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
- Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
- Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
- Choi, Chi-Young & O'Sullivan, Róisín, 2013. "Heterogeneous response of disaggregate inflation to monetary policy regime change: The role of price stickiness," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1814-1832.
- Bradley, Michael D. & Jansen, Dennis W. & Sinclair, Tara M., 2015.
"How Well Does “Core” Inflation Capture Permanent Price Changes?,"
Macroeconomic Dynamics, Cambridge University Press, vol. 19(4), pages 791-815, June.
- Michael D. Bradley & Dennis W. Jansen & Tara M. Sinclair, 2013. "How Well Does "Core" Inflation Capture Permanent Price Changes?," CAMA Working Papers 2013-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Michael D. Bradley & Dennis W. Jansen & Tara M. Sinclair, 2013. "How Well Does "Core" Inflation Capture Permanent Price Changes?," Working Papers 2013-4, The George Washington University, Institute for International Economic Policy.
More about this item
Keywords
attention; internet search; Google; monetary policy; ECB; FED; international financial markets; macro-finance; sovereign bonds; international finance; bond markets; preferred habitat models.;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-04-30 (Big Data)
- NEP-ECM-2018-04-30 (Econometrics)
- NEP-FOR-2018-04-30 (Forecasting)
- NEP-MAC-2018-04-30 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbk:bbkefp:1804. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.bbk.ac.uk/departments/ems/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.