Il existe plusieurs methodes de sous-structuration dynamique pour la simulation numerique du comp... more Il existe plusieurs methodes de sous-structuration dynamique pour la simulation numerique du comportement dynamique lineaire des structures complexes, modelisees par la methode des elements finis, dans le domaine modal dit des basses frequences, par exemple, la methode craig et bampton introduite en 1968. Dans ce travail de recherche, nous presentons une nouvelle approche en sous-structuration dynamique dans le domaine des moyennes frequences, pour les calculs numeriques par elements finis des structures. L'approche proposee est basee sur la decomposition, pour chaque sous-structure, du champ de deplacement admissible introduit par craig et bampton en vue de construire son modele matriciel reduit. Cette approche consiste a remplacer, pour chaque sous-structure a interface de couplage fixe, les premiers modes propres de vibration de la sous-structure non amortie, par les vecteurs propres associes aux valeurs propres dominantes de l'operateur d'energie mecanique relatif a la bande moyenne frequence, de la sous-structure avec son modele de dissipation. Cela revient donc, pour la reponse dynamique, a faire la substitution de la base modale par une base adaptee a la bande moyenne frequence, qui prenne en compte la dissipation et qui permette d'avoir une strategie claire de troncature. Dans ce travail, on presente la theorie dans le cas de la viscoelastodynamique linearisee tridimensionnelle non homogene et non isotrope. La formulation variationnelle et la discretisation par la methode des elements finis sont developpees. Les methodes numeriques specifiques sont introduites. La validation de la methode et les analyses de convergence sont presentees au travers d'exemples.
Mathematical and Computer Modelling of Dynamical Systems, Jul 31, 2009
Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic appro... more Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic approach. The time evolution of apple quality attributes was represented by means of a system of differential equations in which the initial conditions and model parameters are both ...
This paper aims to find the exact solution in an implicit form for the wellknown nonlinear bounda... more This paper aims to find the exact solution in an implicit form for the wellknown nonlinear boundary value problem, namely the MHD Jeffery-Hamel problem, which can be described as the flow between two planes that meet at an angle. Also, two accurate approximate analytic solutions (series solution) are obtained by the variation of the power series method (VPS) and the Duan-Rach modified Adomian decomposition method (DRMA).
Mathematical and Computer Modelling of Dynamical Systems, 2009
Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic appro... more Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic approach. The time evolution of apple quality attributes was represented by means of a system of differential equations in which the initial conditions and model parameters are both ...
IN the low-frequency range, that is, in the modal range, the dynamic substructuring methods1¡ 7 a... more IN the low-frequency range, that is, in the modal range, the dynamic substructuring methods1¡ 7 are suffi cient to calculate the linear dynamical response of complex structures modeled by the fi nite element method. For instance, the CraigBampton method1 is very ...
This article shows that the well-known nonlinear boundary value problem of the differential equat... more This article shows that the well-known nonlinear boundary value problem of the differential equation for temperature distribution of convective straight fins with temperature-dependent thermal conductivity is exactly solvable in an implicit form. Furthermore, an exact solution in an explicit form is derived. Also, an accurate analytic solution (series solution) is obtained by a new variation of the Adomian decomposition method.
n this paper, inverted finite element method is used for solving two-dimensional second order ell... more n this paper, inverted finite element method is used for solving two-dimensional second order elliptic equations with a Dirichlet boundary condition in an exterior domain. After laying down the method, and after giving an estimate of the error, we detail how its implementation can be accomplished. Numerical results show the high efficiency and the accuracy of the method, especially for equations with infinitely varying coefficients.
his paper aims to find the exact solution in an implicit form for the well-known nonlinear bounda... more his paper aims to find the exact solution in an implicit form for the well-known nonlinear boundary value problem, namely the MHD Jeffery-Hamel problem, which can be described as the flow between two planes that meet at an angle. Also, two accurate approximate analytic solutions (series solution) are obtained by the variation of the power series method (VPS) and the Duan-Rach modified Adomian decomposition method (DRMA).
Il existe plusieurs methodes de sous-structuration dynamique pour la simulation numerique du comp... more Il existe plusieurs methodes de sous-structuration dynamique pour la simulation numerique du comportement dynamique lineaire des structures complexes, modelisees par la methode des elements finis, dans le domaine modal dit des basses frequences, par exemple, la methode craig et bampton introduite en 1968. Dans ce travail de recherche, nous presentons une nouvelle approche en sous-structuration dynamique dans le domaine des moyennes frequences, pour les calculs numeriques par elements finis des structures. L'approche proposee est basee sur la decomposition, pour chaque sous-structure, du champ de deplacement admissible introduit par craig et bampton en vue de construire son modele matriciel reduit. Cette approche consiste a remplacer, pour chaque sous-structure a interface de couplage fixe, les premiers modes propres de vibration de la sous-structure non amortie, par les vecteurs propres associes aux valeurs propres dominantes de l'operateur d'energie mecanique relatif a la bande moyenne frequence, de la sous-structure avec son modele de dissipation. Cela revient donc, pour la reponse dynamique, a faire la substitution de la base modale par une base adaptee a la bande moyenne frequence, qui prenne en compte la dissipation et qui permette d'avoir une strategie claire de troncature. Dans ce travail, on presente la theorie dans le cas de la viscoelastodynamique linearisee tridimensionnelle non homogene et non isotrope. La formulation variationnelle et la discretisation par la methode des elements finis sont developpees. Les methodes numeriques specifiques sont introduites. La validation de la methode et les analyses de convergence sont presentees au travers d'exemples.
Mathematical and Computer Modelling of Dynamical Systems, Jul 31, 2009
Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic appro... more Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic approach. The time evolution of apple quality attributes was represented by means of a system of differential equations in which the initial conditions and model parameters are both ...
This paper aims to find the exact solution in an implicit form for the wellknown nonlinear bounda... more This paper aims to find the exact solution in an implicit form for the wellknown nonlinear boundary value problem, namely the MHD Jeffery-Hamel problem, which can be described as the flow between two planes that meet at an angle. Also, two accurate approximate analytic solutions (series solution) are obtained by the variation of the power series method (VPS) and the Duan-Rach modified Adomian decomposition method (DRMA).
Mathematical and Computer Modelling of Dynamical Systems, 2009
Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic appro... more Recently, the basic dynamics of fruit characteristics have been modelled using a stochastic approach. The time evolution of apple quality attributes was represented by means of a system of differential equations in which the initial conditions and model parameters are both ...
IN the low-frequency range, that is, in the modal range, the dynamic substructuring methods1¡ 7 a... more IN the low-frequency range, that is, in the modal range, the dynamic substructuring methods1¡ 7 are suffi cient to calculate the linear dynamical response of complex structures modeled by the fi nite element method. For instance, the CraigBampton method1 is very ...
This article shows that the well-known nonlinear boundary value problem of the differential equat... more This article shows that the well-known nonlinear boundary value problem of the differential equation for temperature distribution of convective straight fins with temperature-dependent thermal conductivity is exactly solvable in an implicit form. Furthermore, an exact solution in an explicit form is derived. Also, an accurate analytic solution (series solution) is obtained by a new variation of the Adomian decomposition method.
n this paper, inverted finite element method is used for solving two-dimensional second order ell... more n this paper, inverted finite element method is used for solving two-dimensional second order elliptic equations with a Dirichlet boundary condition in an exterior domain. After laying down the method, and after giving an estimate of the error, we detail how its implementation can be accomplished. Numerical results show the high efficiency and the accuracy of the method, especially for equations with infinitely varying coefficients.
his paper aims to find the exact solution in an implicit form for the well-known nonlinear bounda... more his paper aims to find the exact solution in an implicit form for the well-known nonlinear boundary value problem, namely the MHD Jeffery-Hamel problem, which can be described as the flow between two planes that meet at an angle. Also, two accurate approximate analytic solutions (series solution) are obtained by the variation of the power series method (VPS) and the Duan-Rach modified Adomian decomposition method (DRMA).
Uploads
Papers by Samy MZIOU