GW method by Michiel van Setten
In a recent work, van Setten and coworkers have presented a carefully converged G0W0 study of 100... more In a recent work, van Setten and coworkers have presented a carefully converged G0W0 study of 100 closed shell molecules [J. Chem. Theory Comput. 2015, 11, 5665-5687]. For two different codes they found excellent agreement to within few 10 meV if identical Gaussian basis sets were used. We inspect the same set of molecules using the projector augmented wave method and the Vienna ab initio simulation package (VASP). For the ionization potential, the basis set extrapolated plane wave results agree very well with the Gaussian basis sets, often reaching better than 50 meV agreement. In order to achieve this agreement, we correct for finite basis set errors as well as errors introduced by periodically repeated images. For positive electron affinities differences between Gaussian basis sets and VASP are slightly larger. We attribute this to larger basis set extrapolation errors for the Gaussian basis sets. For quasi particle (QP) resonances above the vacuum level, differences between VASP and Gaussian basis sets are, however, found to be substantial. This is tentatively explained by insufficient basis set convergence of the Gaussian type orbital calculations as exemplified for selected test cases.
Journal of Chemical Theory and Computation, 2015
We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affi... more We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.
Journal of Chemical Theory and Computation, 2015
Journal of Chemical Theory and Computation, 2013
ABSTRACT The GW-technology corrects the Kohn–Sham (KS) single particle energies and single partic... more ABSTRACT The GW-technology corrects the Kohn–Sham (KS) single particle energies and single particle states for artifacts of the exchange-correlation (XC) functional of the underlying density functional theory (DFT) calculation. We present the formalism and implementation of GW adapted for standard quantum chemistry packages. Our implementation is tested using a typical set of molecules. We find that already after the first iteration of the self-consistency cycle, G0W0, the deviations of quasi-particle energies from experimental ionization potentials and electron affinities can be reduced by an order of magnitude against those of KS-DFT using GGA or hybrid functionals. Also, we confirm that even on this level of approximation there is a considerably diminished dependency of the G0W0-results on the XC-functional of the underlying DFT.
Cheminform, 2008
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was e... more ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Physical Review B, 2011
We calculate from first principles the optical spectra of the hydrides in the sodium alanate hydr... more We calculate from first principles the optical spectra of the hydrides in the sodium alanate hydrogen storage system: NaH, NaAlH4, and Na3AlH6. In particular we study the effects of systematic improvements of the theoretical description. To benchmark the calculations we also measure the optical response of a thin film of NaH. The simplest calculated dielectric functions are based upon independent electrons and holes, whose spectrum is obtained at the G0W0 level. Successive improvements consist of including partial self-consistency (so-called GW0) and account for excitonic effects, using the Bethe-Salpeter equation (BSE). Each improvement gives a sizable blue shift or red shift of the dielectric functions, but conserves the trend in the optical gap among different materials. Whereas these shifts partially cancel at the highest (GW0-BSE) level of approximation, the shape of the dielectric functions is strongly modified by excitonic effects. Calculations at the GW0-BSE level give a good agreement with the dielectric function of NaH extracted from the measurements. It demonstrates that the approach can be used for a quantitative interpretation of spectra in novel hydrogen storage materials obtained via, e.g., hydrogenography.
African Journal of Aquatic Science, 2007
Alanates and boranates are studied intensively because of their potential use as hydrogen storage... more Alanates and boranates are studied intensively because of their potential use as hydrogen storage materials. In this paper we present a first-principles study of the electronic structure and the energetics of beryllium boranate, Be(BH4)2. From total energy calculations we show that - in contrast to the other boranates and alanates - hydrogen desorption directly to the elements is likely, and is at least competitive with desorption to the elemental hydride (BeH2). The formation enthalpy of Be(BH4)2 is only -0.12 eV/H2 (at T=0K). This low value can be rationalized by the participation of all atoms in the covalent bonding, in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature we estimate a decomposition temperature of 162 K at a pressure of 1 bar.
Physical Review B, 2007
Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation kinetics. Its hydrog... more Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation kinetics. Its hydrogen desorption enthalpy, however, is too large for practical applications. In this paper we study the effects of transition metal doping by first-principles density functional theory calculations. We show that the hydrogen desorption enthalpy can be reduced by ˜0.1eV/H2 if one in eight Ni atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the hydrogen desorption enthalpy. We study the thermodynamic stability of the dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu leads to marginally stable compounds, whereas doping with Fe leads to an unstable compound. The optical response of Mg2NiH4 is also substantially affected by doping. The direct gap in Mg2NiH4 is ˜1.7eV . Doping with Co, Fe, or Cu leads to impurity bands that reduce the direct gap by up to 0.5eV .
Journal of Physics-condensed Matter, 2010
Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation prop... more Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c)= 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.
Hydrogen storage by Michiel van Setten
Chemistry of Materials, 2008
Journal of Alloys and Compounds, 2009
Acta Materialia, 2010
We monitor the hydrogenation of PTFE/Pd-capped MgyNi1−yHx gradient thin films using the change in... more We monitor the hydrogenation of PTFE/Pd-capped MgyNi1−yHx gradient thin films using the change in optical transmission as a function of time, temperature and hydrogen pressure, to study the relation between kinetics and thermodynamics of hydrogenation of this multiphase hydride system. The interplay between kinetics and thermodynamics is used to extrapolate the hydrogenation equilibrium pressures via the H-absorption rate. Pressure–optical-transmission–isotherms determined
Journal of Physics-condensed Matter, 2010
Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation prop... more Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c)= 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.
Rivista Di Biologia-biology Forum, 2008
Physical Review B, 2007
We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2 , and AlH3 , an... more We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2 , and AlH3 , and of the complex hydrides Li3AlH6 , Na3AlH6 , LiAlH4 , NaAlH4 , and Mg(AlH4)2 , using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-particle band gaps varying from 3.5eV in AlH3 to 6.6eV in LiAlH4 . Despite considerable differences between the band structures and the band gaps of the various compounds, their optical responses are qualitatively similar. In most of the spectra the optical absorption rises sharply above 6eV and has a strong peak around 8eV . The quantitative differences in the optical spectra are interpreted in terms of the structure and the electronic structure of the compounds. In the simple hydrides the valence bands are dominated by the hydrogen atoms, whereas the conduction bands have mixed contributions from the hydrogens and the metal cations. The electronic structure of the aluminium compounds is determined mainly by aluminium hydride complexes and their mutual interactions.
Physical Review B, 2005
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen sto... more Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2 . Density functional theory calculations within the generalized gradient approximation (GGA) are used to optimize the geometry and obtain the electronic structure. The latter is also studied by quasi-particle calculations at the GW level. Mg(AlH4)2 is a large band gap insulator with a fundamental band gap of 6.5eV . The hydrogen atoms are bonded in AlH4 complexes, whose states dominate both the valence and the conduction bands. On the basis of total energies, the reaction enthalpy for decomposing Mg(AlH4)2 into bulk magnesium, bulk aluminum and hydrogen gas is 0.17eV/H2 (at T=0 ). Including corrections due to the zero point vibrations of the hydrogen atoms this number decreases to 0.10eV/H2 . The enthalpy of the dehydrogenation reaction Mg(AlH4)2→MgH2+2Al+3H2(g) is close to zero, which impairs the potential usefulness of magnesium alanate as a hydrogen storage material.
Physical Review B, 2009
The optical and electronic properties of Mg-Ti hydrides are studied using first-principles densit... more The optical and electronic properties of Mg-Ti hydrides are studied using first-principles density functional theory. Dielectric functions are calculated for MgxTi(1-x)H2 with compositions x = 0.5, 0.75, and 0.875. The structure is that of fluorite TiH2 where both Mg and Ti atoms reside at the Ti positions of the lattice. In order to assess the effect of randomness in the Mg and Ti occupations we consider both highly ordered structures, modeled with simple unit cells of minimal size, and models of random alloys. These are simulated by super cells containing up to 64 formula units (Z = 64). All compositions and structural models turn out metallic, hence the dielectric functions contain interband and intraband free electron contributions. The former are calculated in the independent particle random phase approximation. The latter are modeled based upon the intraband plasma frequencies, which are also calculated from first-principles. Only for the models of the random alloys we obtain a black state, i.e. low reflection and transmission in the energy range from 1 to 6 eV.
Physical Review B, 2010
Compounds of light elements and hydrogen are currently extensively studied due to their potential... more Compounds of light elements and hydrogen are currently extensively studied due to their potential application in the field of hydrogen or energy storage. A number of new interesting tetrahydroborates that are especially promising due to their very high gravimetric hydrogen content were recently reported. However, the determination and understanding of their complex crystalline structures has created considerable debate. Metal tetrahydroborates, in general, form a large variety of structures ranging from simple for NaBH4 to very complex for Mg(BH4)2 . Despite the extensive discussion in the literature no clear explanation has been offered for this variety so far. In this paper we analyze the structural and electronic properties of a broad range of metal tetrahydroborates and reveal the factors that determine their structure: ionic bonding, the orientation of the BH4 groups, and the coordination number of the metal cation. We show, in a simple way, that the charge transfer in the metal tetrahydroborates rationally explains the structural diversity of these compounds. Being ionic systems, the metal tetrahydroborates fall into the classification of Linus Pauling. By using the ionic radius for the BH4 group as determined in this paper, this allows for structural predictions for new and mixed compounds.
Uploads
GW method by Michiel van Setten
Hydrogen storage by Michiel van Setten