SLITRK family proteins control neurite outgrowth and regulate synaptic development. In mice, Slit... more SLITRK family proteins control neurite outgrowth and regulate synaptic development. In mice, Slitrk6 plays a role in the survival and innervation of sensory neurons in the inner ear, vestibular apparatus, and retina, and also influences axial eye length. We provide the first detailed description of the auditory phenotype in humans with recessive SLITRK6 deficiency. Prospective observational case study. Nine closely related Amish subjects from an endogamous Amish community of Pennsylvania underwent audiologic and vestibular testing. Single nucleotide polymorphism microarrays were used to map the chromosome locus, and Sanger sequencing or high-resolution melt analysis were used to confirm the allelic variant. All nine subjects were homozygous for a novel nonsense variant of SLITRK6 (c.1240C>T, p.Gln414Ter). Adult patients had high myopia. The 4 oldest SLITRK6 c.1240C>T homozygotes had absent ipsilateral middle ear muscle reflexes (MEMRs). Distortion product otoacoustic emissions (DPOAEs) were absent in all ears tested and the cochlear microphonic (CM) was increased in amplitude and duration in young patients and absent in the two oldest subjects. Auditory brainstem responses (ABRs) were dys-synchronised bilaterally with no reproducible waves I, III, or V at high intensities. Hearing loss and speech reception thresholds deteriorated symmetrically with age, which resulted in severe-to-profound hearing impairment by early adulthood. Vestibular evoked myogenic potentials were normal in three ears and absent in one. Homozygous SLITRK6 c.1240C>T (p.Gln414Ter) nonsense mutations are associated with high myopia, cochlear dysfunction attributed to outer hair cell disease, and progressive auditory neuropathy.
We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 ch... more We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single ...
SLITRK family proteins control neurite outgrowth and regulate synaptic development. In mice, Slit... more SLITRK family proteins control neurite outgrowth and regulate synaptic development. In mice, Slitrk6 plays a role in the survival and innervation of sensory neurons in the inner ear, vestibular apparatus, and retina, and also influences axial eye length. We provide the first detailed description of the auditory phenotype in humans with recessive SLITRK6 deficiency. Prospective observational case study. Nine closely related Amish subjects from an endogamous Amish community of Pennsylvania underwent audiologic and vestibular testing. Single nucleotide polymorphism microarrays were used to map the chromosome locus, and Sanger sequencing or high-resolution melt analysis were used to confirm the allelic variant. All nine subjects were homozygous for a novel nonsense variant of SLITRK6 (c.1240C>T, p.Gln414Ter). Adult patients had high myopia. The 4 oldest SLITRK6 c.1240C>T homozygotes had absent ipsilateral middle ear muscle reflexes (MEMRs). Distortion product otoacoustic emissions (DPOAEs) were absent in all ears tested and the cochlear microphonic (CM) was increased in amplitude and duration in young patients and absent in the two oldest subjects. Auditory brainstem responses (ABRs) were dys-synchronised bilaterally with no reproducible waves I, III, or V at high intensities. Hearing loss and speech reception thresholds deteriorated symmetrically with age, which resulted in severe-to-profound hearing impairment by early adulthood. Vestibular evoked myogenic potentials were normal in three ears and absent in one. Homozygous SLITRK6 c.1240C>T (p.Gln414Ter) nonsense mutations are associated with high myopia, cochlear dysfunction attributed to outer hair cell disease, and progressive auditory neuropathy.
We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 ch... more We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single ...
Uploads
Papers by Adam Heaps