Proceedings of the National Academy of Sciences, 2007
The Asian snake Rhabdophis tigrinus possesses specialized defensive glands on its neck that conta... more The Asian snake Rhabdophis tigrinus possesses specialized defensive glands on its neck that contain steroidal toxins known as bufadienolides. We hypothesized that R. tigrinus does not synthesize these defensive steroids but instead sequesters the toxins from toads it consumes as prey. To test this hypothesis, we conducted chemical analyses on the glandular fluid from snakes collected in toad-free and toad-present localities. We also performed feeding experiments in which hatchling R. tigrinus were reared on controlled diets that either included or lacked toads. We demonstrate that the cardiotonic steroids in the nuchal glands of R. tigrinus are obtained from dietary toads. We further show that mothers containing high levels of bufadienolides can provision their offspring with toxins. Hatchlings had bufadienolides in their nuchal glands only if they were fed toads or were born to a dam with high concentrations of these compounds. Because geographic patterns in the availability of tox...
Toads are chemically defended by bufadienolides, a class of cardiotonic steroids that exert toxic... more Toads are chemically defended by bufadienolides, a class of cardiotonic steroids that exert toxic effects by binding to and disabling the Na(+)/K(+)-ATPases of cell membranes. Some predators, including a number of snakes, have evolved resistance to the toxic effects of bufadienolides and prey regularly on toads. Resistance in snakes to the acute effects of these toxins is conferred by at least two amino acid substitutions in the cardiotonic steroid binding pocket of the Na(+)/K(+)-ATPase. We surveyed 100 species of snakes from a broad phylogenetic range for the presence or absence of resistance-conferring mutations. We found that such mutations occur in a much wider range of taxa than previously believed. Although all sequenced species known to consume toads exhibited the resistance mutations, many of the species possessing the mutations do not feed on toads, much less specialize on that food source. This suggests that either there is little performance cost associated with these mu...
Thesis (Ph. D.)--University of Kansas, 1979. Includes bibliographical references. Microfilm of ty... more Thesis (Ph. D.)--University of Kansas, 1979. Includes bibliographical references. Microfilm of typescript. s
Rhabdophis tigrinus obtains defensive steroids (bufadienolides) from its diet and sequesters thos... more Rhabdophis tigrinus obtains defensive steroids (bufadienolides) from its diet and sequesters those compounds in specialized structures on its neck known as nuchal glands. Hatchling snakes lacking these steroids must acquire them from toads consumed as prey. Here we show that females provision bufadienolides to their offspring in amounts correlated to the quantity in their own nuchal glands; thus, chemically protected mothers produce defended offspring. Bufadienolides can be provisioned to embryos via deposition in yolk and by transfer across the egg membranes within the oviducts. Maternally provisioned bufadienolides persist in the nuchal glands of juvenile snakes from the time of hatching in late summer until the following spring, when toads of ingestible size become abundant. Therefore, maternal provisioning may provide chemical protection from predators for young R. tigrinus in the absence of dietary sources of bufadienolides.
Proceedings of the National Academy of Sciences, 2007
The Asian snake Rhabdophis tigrinus possesses specialized defensive glands on its neck that conta... more The Asian snake Rhabdophis tigrinus possesses specialized defensive glands on its neck that contain steroidal toxins known as bufadienolides. We hypothesized that R. tigrinus does not synthesize these defensive steroids but instead sequesters the toxins from toads it consumes as prey. To test this hypothesis, we conducted chemical analyses on the glandular fluid from snakes collected in toad-free and toad-present localities. We also performed feeding experiments in which hatchling R. tigrinus were reared on controlled diets that either included or lacked toads. We demonstrate that the cardiotonic steroids in the nuchal glands of R. tigrinus are obtained from dietary toads. We further show that mothers containing high levels of bufadienolides can provision their offspring with toxins. Hatchlings had bufadienolides in their nuchal glands only if they were fed toads or were born to a dam with high concentrations of these compounds. Because geographic patterns in the availability of tox...
Toads are chemically defended by bufadienolides, a class of cardiotonic steroids that exert toxic... more Toads are chemically defended by bufadienolides, a class of cardiotonic steroids that exert toxic effects by binding to and disabling the Na(+)/K(+)-ATPases of cell membranes. Some predators, including a number of snakes, have evolved resistance to the toxic effects of bufadienolides and prey regularly on toads. Resistance in snakes to the acute effects of these toxins is conferred by at least two amino acid substitutions in the cardiotonic steroid binding pocket of the Na(+)/K(+)-ATPase. We surveyed 100 species of snakes from a broad phylogenetic range for the presence or absence of resistance-conferring mutations. We found that such mutations occur in a much wider range of taxa than previously believed. Although all sequenced species known to consume toads exhibited the resistance mutations, many of the species possessing the mutations do not feed on toads, much less specialize on that food source. This suggests that either there is little performance cost associated with these mu...
Thesis (Ph. D.)--University of Kansas, 1979. Includes bibliographical references. Microfilm of ty... more Thesis (Ph. D.)--University of Kansas, 1979. Includes bibliographical references. Microfilm of typescript. s
Rhabdophis tigrinus obtains defensive steroids (bufadienolides) from its diet and sequesters thos... more Rhabdophis tigrinus obtains defensive steroids (bufadienolides) from its diet and sequesters those compounds in specialized structures on its neck known as nuchal glands. Hatchling snakes lacking these steroids must acquire them from toads consumed as prey. Here we show that females provision bufadienolides to their offspring in amounts correlated to the quantity in their own nuchal glands; thus, chemically protected mothers produce defended offspring. Bufadienolides can be provisioned to embryos via deposition in yolk and by transfer across the egg membranes within the oviducts. Maternally provisioned bufadienolides persist in the nuchal glands of juvenile snakes from the time of hatching in late summer until the following spring, when toads of ingestible size become abundant. Therefore, maternal provisioning may provide chemical protection from predators for young R. tigrinus in the absence of dietary sources of bufadienolides.
Uploads
Papers by Alan Savitzky