Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Angela Menegatti

    YopH tyrosine phosphatase, a virulence factor produced by pathogenic species of Yersinia, is an attractive drug target. In this work, three oxidovanadium(IV) complexes were assayed against recombinant YopH and showed strong inhibition of... more
    YopH tyrosine phosphatase, a virulence factor produced by pathogenic species of Yersinia, is an attractive drug target. In this work, three oxidovanadium(IV) complexes were assayed against recombinant YopH and showed strong inhibition of the enzyme in the nanomolar range. Molecular modeling indicated that their binding is reinforced by H-bond, cation-π, and π-π interactions conferring specificity toward YopH. These complexes are thus interesting lead molecules for phosphatase inhibitor drug discovery.
    Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms.... more
    Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms. An inspection of Mycoplasma synoviae genome revealed the presence of a gene (prpC) encoding a putative protein phosphatase of the protein phosphatase 2C (PP2C) subfamily. Here, we report a complete biochemical characterization of M. synoviae phosphatase (PrpC) and the particular role of metal ions in the structure-function relationship of this enzyme. PrpC amino acid sequence analysis revealed that all the residues involved in the dinuclear metal center and the putative third metal ion-coordinating residues, conserved in PP2C phosphatases, are present in PrpC. PrpC is a monomeric protein able to dephosphorylate phospho-substrates with Mn(2+) ions' dependence. Thermal stability analysis demonstrated the enzyme stability at mild temperatures and the influence of Mn(2+) ions in this property. Mass spectrometry analysis suggested that three metal ions bind to PrpC, two of which with an apparent high-affinity constant. Mutational analysis of the putative third metal-coordinating residues, Asp122 and Arg164, revealed that these variants exhibited a weaker binding of manganese ions, and that both mutations affected PrpC phosphatase activity. According to these results, PrpC is a metal-dependent protein phosphatase member with an improved stability in the holo form and with Asp122, possibly implicated in the third metal-binding site, essential to catalytic activity.
    Preconditioning induced by N-methyl-D-aspartate (NMDA) has been used as a therapeutic tool against later neuronal insults. NMDA preconditioning affords neuroprotection against convulsions and cellular damage induced by the NMDA receptor... more
    Preconditioning induced by N-methyl-D-aspartate (NMDA) has been used as a therapeutic tool against later neuronal insults. NMDA preconditioning affords neuroprotection against convulsions and cellular damage induced by the NMDA receptor agonist, quinolinic acid (QA) with time-window dependence. This study aimed to evaluate the molecular alterations promoted by NMDA and to compare these alterations in different periods of time that are related to the presence or lack of neuroprotection. Putative mechanisms related to NMDA preconditioning were evaluated via a proteomic analysis by using a time-window study. After a subconvulsant and protective dose of NMDA administration mice, hippocampi were removed (1, 24 or 72 h) and total protein analyzed by 2DE gels and identified by MALDI-TOF. Differential protein expression among the time induction of NMDA preconditioning was observed. In the hippocampus of protected mice (24 h), four proteins: HSP70(B), aspartyl-tRNA synthetase, phosphatidylethanolamine binding protein and creatine kinase were found to be up-regulated. Two other proteins, HSP70(A) and V-type proton ATPase were found down-regulated. Proteomic analysis showed that the neuroprotection induced by NMDA preconditioning altered signaling pathways, cell energy maintenance and protein synthesis and processing. These events may occur in a sense to attenuate the excitotoxicity process during the activation of neuroprotection promoted by NMDA preconditioning.
    YopH plays a relevant role in three pathogenic species of Yersinia. Due to its importance in the prevention of the inflammatory response of the host, this enzyme has become a valid target for the identification and development of new... more
    YopH plays a relevant role in three pathogenic species of Yersinia. Due to its importance in the prevention of the inflammatory response of the host, this enzyme has become a valid target for the identification and development of new inhibitors. In this work, an in-house library of 283 synthetic compounds was assayed against recombinant YopH from Yersinia enterocolitica. From these, four chalcone derivatives and one sulfonamide were identified for the first time as competitive inhibitors of YopH with binding affinity in the low micromolar range. Molecular modeling investigations indicated that the new inhibitors showed similar binding modes, establishing polar and hydrophobic contacts with key residues of the YopH binding site.