Fab labs, which offer small-scale distributed digital fabrication, are forming a Green Fab Lab Ne... more Fab labs, which offer small-scale distributed digital fabrication, are forming a Green Fab Lab Network, which embraces concepts of an open source symbiotic economy and circular economy patterns. With the use of industrial 3D printers capable of fused particle fabrication/ fused granular fabrication (FPF/FGF) printing directly from waste plastic streams, green fab labs could act as defacto recycling centers for converting waste plastics into valuable products for their communities. Clear financial drivers for this process have not been studied in the past. Thus, in this study the Gigabot X, an open source industrial 3D printer, which has been shown to be amenable to a wide array of recyclables for FPF/FGF 3D printing, is used to evaluate this economic potential. An economic life cycle analysis of the technology is completed comprised of three cases studies using FPF for large sporting equipment products. Sensitivities are run on the electricity costs for operation, materials costs from various feed stocks and the capacity factors of the 3D printers. The results showed that FPF/FGF 3D printing is capable of energy efficient production of a wide range of large high-value sporting goods products. In all cases, a substantial economic savings was observed when comparing the materials and energy related costs to commercial goods (even for customized goods). Using locally-sourced shredded plastic represented not only the best environmental option, but also the most economic. For the case study products analyzed even the lowest capacity factor (starting only one print per week) represented a profit when comparing to high-end value products. For some products the profit potential and return on investment was substantial (e.g. over 1000%) for high capacity use of a Gigabot X. The results clearly show that open source industrial FPF/FGF 3D printers have significant economic potential when used as a distributed recycling/manufacturing system using recyclable feed stocks in the green fab lab context.
Although distributed additive manufacturing can provide high returns on investment, the current m... more Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF as well as indirectly after being converted into high-tolerance filament in a recyclebot.
Distributed manufacturing even at the household level is now well established with the combined u... more Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical energy use and filament consumption by mass to determine the cost to fabricate with a commercial RepRap 3-D printer. Printed parts were inspected and when necessary tested for their targeted application to ensure technical feasibility. Then, the experimentally measured cost to DIY manufacturers was compared to low and high market prices for comparable commercially available products. In addition, the markup and potential for long-term price declines was estimated for flexible filaments by converting thermoplastic elastomer (TPE) pellets into filament and reground TPE from a local recycling center into filament using an open source recyclebot. This study found that commercial flexible filament is economically as well as technically feasible for providing a means of distributed home-scale manufacturing of flexible products. The results found a 75% savings when compared to the least expensive commercially equivalent products and 92% when compared to high market priced products. Roughly, 160 flexible objects must be substituted to recover the capital costs to print flexible materials. However, as previous work has shown the Lulzbot Mini 3-D printer used in this study would provide more than a 100% ROI printing one object a week from hard thermoplastics, the upgrade needed to provide flexible filament capabilities can be accomplished with 37 average substitution flexible prints. This, again easily provides a triple digit return on investment printing one product a week. Although these savings, which are created by printing objects at home are substantial, the results also have shown the savings could be further increased to 93% when the use of a pellet extruder and TPE pellets, and 99% if recycled TPE filament made with a recyclebot is used. The capital costs of a recyclebot can be recovered in the manufacturing of about 9 kg of TPE filament, which can be accomplished in less than a week, enabling improved environmental impact as well as a strong financial return for heavy 3-D printer users.
Fab labs, which offer small-scale distributed digital fabrication, are forming a Green Fab Lab Ne... more Fab labs, which offer small-scale distributed digital fabrication, are forming a Green Fab Lab Network, which embraces concepts of an open source symbiotic economy and circular economy patterns. With the use of industrial 3D printers capable of fused particle fabrication/ fused granular fabrication (FPF/FGF) printing directly from waste plastic streams, green fab labs could act as defacto recycling centers for converting waste plastics into valuable products for their communities. Clear financial drivers for this process have not been studied in the past. Thus, in this study the Gigabot X, an open source industrial 3D printer, which has been shown to be amenable to a wide array of recyclables for FPF/FGF 3D printing, is used to evaluate this economic potential. An economic life cycle analysis of the technology is completed comprised of three cases studies using FPF for large sporting equipment products. Sensitivities are run on the electricity costs for operation, materials costs from various feed stocks and the capacity factors of the 3D printers. The results showed that FPF/FGF 3D printing is capable of energy efficient production of a wide range of large high-value sporting goods products. In all cases, a substantial economic savings was observed when comparing the materials and energy related costs to commercial goods (even for customized goods). Using locally-sourced shredded plastic represented not only the best environmental option, but also the most economic. For the case study products analyzed even the lowest capacity factor (starting only one print per week) represented a profit when comparing to high-end value products. For some products the profit potential and return on investment was substantial (e.g. over 1000%) for high capacity use of a Gigabot X. The results clearly show that open source industrial FPF/FGF 3D printers have significant economic potential when used as a distributed recycling/manufacturing system using recyclable feed stocks in the green fab lab context.
Although distributed additive manufacturing can provide high returns on investment, the current m... more Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF as well as indirectly after being converted into high-tolerance filament in a recyclebot.
Distributed manufacturing even at the household level is now well established with the combined u... more Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical energy use and filament consumption by mass to determine the cost to fabricate with a commercial RepRap 3-D printer. Printed parts were inspected and when necessary tested for their targeted application to ensure technical feasibility. Then, the experimentally measured cost to DIY manufacturers was compared to low and high market prices for comparable commercially available products. In addition, the markup and potential for long-term price declines was estimated for flexible filaments by converting thermoplastic elastomer (TPE) pellets into filament and reground TPE from a local recycling center into filament using an open source recyclebot. This study found that commercial flexible filament is economically as well as technically feasible for providing a means of distributed home-scale manufacturing of flexible products. The results found a 75% savings when compared to the least expensive commercially equivalent products and 92% when compared to high market priced products. Roughly, 160 flexible objects must be substituted to recover the capital costs to print flexible materials. However, as previous work has shown the Lulzbot Mini 3-D printer used in this study would provide more than a 100% ROI printing one object a week from hard thermoplastics, the upgrade needed to provide flexible filament capabilities can be accomplished with 37 average substitution flexible prints. This, again easily provides a triple digit return on investment printing one product a week. Although these savings, which are created by printing objects at home are substantial, the results also have shown the savings could be further increased to 93% when the use of a pellet extruder and TPE pellets, and 99% if recycled TPE filament made with a recyclebot is used. The capital costs of a recyclebot can be recovered in the manufacturing of about 9 kg of TPE filament, which can be accomplished in less than a week, enabling improved environmental impact as well as a strong financial return for heavy 3-D printer users.
Uploads
Papers by Aubrey Woern