Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic ac... more Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic acids metabolism. Over 50% of AGS mutations affect RNase H2 the only enzyme able to remove single ribonucleotide-monophosphates (rNMPs) embedded in DNA. Ribonucleotide triphosphates (rNTPs) are incorporated into genomic DNA with relatively high frequency during normal replication making DNA more susceptible to strand breakage and mutations. Here we demonstrate that human cells depleted of RNase H2 show impaired cell cycle progression associated with chronic activation of post-replication repair (PRR) and genome instability. We identify a similar phenotype in cells derived from AGS patients, which indeed accumulate rNMPs in genomic DNA and exhibit markers of constitutive PRR and checkpoint activation. Our data indicate that in human cells RNase H2 plays a crucial role in correcting rNMPs misincorporation, preventing DNA damage. Such protective function is compromised in AGS patients and may...
To identify the genetic cause of a complex syndrome characterized by autophagic vacuolar myopathy... more To identify the genetic cause of a complex syndrome characterized by autophagic vacuolar myopathy (AVM), hypertrophic cardiomyopathy, pigmentary retinal degeneration, and epilepsy. Clinical, pathologic, and genetic study. Two brothers presented with visual failure, seizures, and prominent cardiac involvement, but only mild cognitive impairment and no motor deterioration after 40 years of disease duration. Muscle biopsy revealed the presence of widespread alterations suggestive of AVM with autophagic vacuoles with sarcolemmal features. Through combined homozygosity mapping and exome sequencing, we identified a novel p.Gly165Glu mutation in CLN3. This study expands the clinical phenotype of CLN3 disease. Genetic testing for CLN3 should be considered in AVM with autophagic vacuoles with sarcolemmal features.
Mutations in valosin-containing protein (VCP) gene, already known to be associated with the multi... more Mutations in valosin-containing protein (VCP) gene, already known to be associated with the multisystemic disorder, inclusion body myopathy with Paget's disease and frontotemporal dementia (IBMPFD), have been recently found also in familial cases of amyotrophic lateral sclerosis (ALS). To further define the frequency of VCP mutations in ALS Italian population, we screened a cohort of 166 familial ALS and 14 ALS-frontotemporal dementia (FTD) individuals. We identified a previously reported synonymous mutation (c.2093A>C; p.Q568Q), 2 intronic variants (c.1749-14C>T; c.2085-3C>T), and 1 nucleotide change (c.2814G>T) in the 3' untranslated region (UTR). Bioinformatical analyses predicted no changes in splicing process or microRNA binding sites. Our results do not confirm a main contribution of VCP gene to familial ALS in the Italian population.
Exome sequencing is an effective strategy for identifying human disease genes. However, this meth... more Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analy...
A hexanucleotide repeat expansion (RE) in C9ORF72 gene was recently reported as the main cause of... more A hexanucleotide repeat expansion (RE) in C9ORF72 gene was recently reported as the main cause of amyotrophic lateral sclerosis (ALS) and cases with frontotemporal dementia. We screened C9ORF72 in a large cohort of 259 familial ALS, 1275 sporadic ALS, and 862 control individuals of Italian descent. We found RE in 23.9% familial ALS, 5.1% sporadic ALS, and 0.2% controls. Two cases carried the RE together with mutations in other ALS-associated genes. The phenotype of RE carriers was characterized by bulbar-onset, shorter survival, and association with cognitive and behavioral impairment. Extrapyramidal and cerebellar signs were also observed in few patients. Genotype data revealed that 95% of RE carriers shared a restricted 10-single nucleotide polymorphism haplotype within the previously reported 20-single nucleotide polymorphism risk haplotype, detectable in only 27% of nonexpanded ALS cases and in 28% of controls, suggesting a common founder with cohorts of North European ancestry. Although C9ORF72 RE segregates with disease, the identification of RE both in controls and in patients carrying additional pathogenic mutations suggests that penetrance and phenotypic expression of C9ORF72 RE may depend on additional genetic risk factors.
GLUT1 deficiency syndrome is a treatable neurological disorder characterized by developmental del... more GLUT1 deficiency syndrome is a treatable neurological disorder characterized by developmental delay, movement disorders and epilepsy. It is caused by mutations in the SLC2A1 gene inherited as an autosomal dominant trait with complete penetrance, even if most detected SCL2A1 mutations are de novo. Our aim is to present a wide series of Italian patients to highlight the differences among subjects with de novo mutations and those with familial transmission. We present clinical and genetic features in a series of 22 GLUT1DS Italian patients. Our patients were classified in two different groups: familial cases including GLUT1DS patients with genetically confirmed affected relatives and sporadic cases with detection of SLC2A1 de novo mutation. We found remarkable differences in the severity of the clinical picture regarding the type of genetic inheritance (sporadic versus familial): sporadic patients were characterized by an earlier epilepsy-onset and higher degree of intellectual disability. No significant differences were found in terms of type of movement disorder, whilst Paroxysmal Exertion-induced Dyskinesia (PED) is confirmed to be the most characteristic movement disorder type in GLUT1DS. In familial cases the clinical manifestation of the disease was particularly variable and heterogeneous, also including asymptomatic patients or those with minimal-symptoms. The finding of a "mild" phenotype in familial GLUT1DS gives rise to several questions: the real incidence of the disease, treatment option with ketogenic diet in adult patients and genetic counseling.
The involvement of the immune system has been hypothesized in the pathogenesis of amyotrophic lat... more The involvement of the immune system has been hypothesized in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study a significantly higher level of TNF-alpha and its soluble receptors, TNF-R1 and TNF-R2, has been found in plasma of patients affected by the sporadic form of ALS compared to normal subjects. The genetic analysis of the polymorphisms of TNF-alpha, TNF-R1
The mutated Cu,Zn-superoxide dismutase gene (SOD1) (E.C. No. 1.15.1.1) is generally recognized as... more The mutated Cu,Zn-superoxide dismutase gene (SOD1) (E.C. No. 1.15.1.1) is generally recognized as a pathological cause of 20% of the familial form of Amyotrophic Lateral Sclerosis (ALS). However, several pieces of evidence also show that wild-type SOD1, under conditions of cellular stress, is implicated in a significant fraction of sporadic ALS cases, which represent 90% of ALS patients. Herein, we describe an abnormally high level of SOD1 transcript in spinal cord, brain stem and lymphocytes of sporadic ALS patients. Protein expression studies show a similar or lower amount of SOD1 in affected brain areas and lymphocytes, respectively. No differences are found in brain regions (cerebellum and non-motor cerebral cortex) not involved in the ALS neurodegenerative processes. In this report, cell and disease specificity are shown since no mRNA SOD1 increase is observed in sporadic ALS fibroblasts or in lymphocytes of patients affected by Alzheimer's disease. These findings provide new insight and understanding of the pathologic causes of sporadic forms of ALS and allow a possible explanation for the molecular involvement of wild-type SOD1.
Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic ac... more Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic acids metabolism. Over 50% of AGS mutations affect RNase H2 the only enzyme able to remove single ribonucleotide-monophosphates (rNMPs) embedded in DNA. Ribonucleotide triphosphates (rNTPs) are incorporated into genomic DNA with relatively high frequency during normal replication making DNA more susceptible to strand breakage and mutations. Here we demonstrate that human cells depleted of RNase H2 show impaired cell cycle progression associated with chronic activation of post-replication repair (PRR) and genome instability. We identify a similar phenotype in cells derived from AGS patients, which indeed accumulate rNMPs in genomic DNA and exhibit markers of constitutive PRR and checkpoint activation. Our data indicate that in human cells RNase H2 plays a crucial role in correcting rNMPs misincorporation, preventing DNA damage. Such protective function is compromised in AGS patients and may...
To identify the genetic cause of a complex syndrome characterized by autophagic vacuolar myopathy... more To identify the genetic cause of a complex syndrome characterized by autophagic vacuolar myopathy (AVM), hypertrophic cardiomyopathy, pigmentary retinal degeneration, and epilepsy. Clinical, pathologic, and genetic study. Two brothers presented with visual failure, seizures, and prominent cardiac involvement, but only mild cognitive impairment and no motor deterioration after 40 years of disease duration. Muscle biopsy revealed the presence of widespread alterations suggestive of AVM with autophagic vacuoles with sarcolemmal features. Through combined homozygosity mapping and exome sequencing, we identified a novel p.Gly165Glu mutation in CLN3. This study expands the clinical phenotype of CLN3 disease. Genetic testing for CLN3 should be considered in AVM with autophagic vacuoles with sarcolemmal features.
Mutations in valosin-containing protein (VCP) gene, already known to be associated with the multi... more Mutations in valosin-containing protein (VCP) gene, already known to be associated with the multisystemic disorder, inclusion body myopathy with Paget's disease and frontotemporal dementia (IBMPFD), have been recently found also in familial cases of amyotrophic lateral sclerosis (ALS). To further define the frequency of VCP mutations in ALS Italian population, we screened a cohort of 166 familial ALS and 14 ALS-frontotemporal dementia (FTD) individuals. We identified a previously reported synonymous mutation (c.2093A>C; p.Q568Q), 2 intronic variants (c.1749-14C>T; c.2085-3C>T), and 1 nucleotide change (c.2814G>T) in the 3' untranslated region (UTR). Bioinformatical analyses predicted no changes in splicing process or microRNA binding sites. Our results do not confirm a main contribution of VCP gene to familial ALS in the Italian population.
Exome sequencing is an effective strategy for identifying human disease genes. However, this meth... more Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analy...
A hexanucleotide repeat expansion (RE) in C9ORF72 gene was recently reported as the main cause of... more A hexanucleotide repeat expansion (RE) in C9ORF72 gene was recently reported as the main cause of amyotrophic lateral sclerosis (ALS) and cases with frontotemporal dementia. We screened C9ORF72 in a large cohort of 259 familial ALS, 1275 sporadic ALS, and 862 control individuals of Italian descent. We found RE in 23.9% familial ALS, 5.1% sporadic ALS, and 0.2% controls. Two cases carried the RE together with mutations in other ALS-associated genes. The phenotype of RE carriers was characterized by bulbar-onset, shorter survival, and association with cognitive and behavioral impairment. Extrapyramidal and cerebellar signs were also observed in few patients. Genotype data revealed that 95% of RE carriers shared a restricted 10-single nucleotide polymorphism haplotype within the previously reported 20-single nucleotide polymorphism risk haplotype, detectable in only 27% of nonexpanded ALS cases and in 28% of controls, suggesting a common founder with cohorts of North European ancestry. Although C9ORF72 RE segregates with disease, the identification of RE both in controls and in patients carrying additional pathogenic mutations suggests that penetrance and phenotypic expression of C9ORF72 RE may depend on additional genetic risk factors.
GLUT1 deficiency syndrome is a treatable neurological disorder characterized by developmental del... more GLUT1 deficiency syndrome is a treatable neurological disorder characterized by developmental delay, movement disorders and epilepsy. It is caused by mutations in the SLC2A1 gene inherited as an autosomal dominant trait with complete penetrance, even if most detected SCL2A1 mutations are de novo. Our aim is to present a wide series of Italian patients to highlight the differences among subjects with de novo mutations and those with familial transmission. We present clinical and genetic features in a series of 22 GLUT1DS Italian patients. Our patients were classified in two different groups: familial cases including GLUT1DS patients with genetically confirmed affected relatives and sporadic cases with detection of SLC2A1 de novo mutation. We found remarkable differences in the severity of the clinical picture regarding the type of genetic inheritance (sporadic versus familial): sporadic patients were characterized by an earlier epilepsy-onset and higher degree of intellectual disability. No significant differences were found in terms of type of movement disorder, whilst Paroxysmal Exertion-induced Dyskinesia (PED) is confirmed to be the most characteristic movement disorder type in GLUT1DS. In familial cases the clinical manifestation of the disease was particularly variable and heterogeneous, also including asymptomatic patients or those with minimal-symptoms. The finding of a "mild" phenotype in familial GLUT1DS gives rise to several questions: the real incidence of the disease, treatment option with ketogenic diet in adult patients and genetic counseling.
The involvement of the immune system has been hypothesized in the pathogenesis of amyotrophic lat... more The involvement of the immune system has been hypothesized in the pathogenesis of amyotrophic lateral sclerosis (ALS). In this study a significantly higher level of TNF-alpha and its soluble receptors, TNF-R1 and TNF-R2, has been found in plasma of patients affected by the sporadic form of ALS compared to normal subjects. The genetic analysis of the polymorphisms of TNF-alpha, TNF-R1
The mutated Cu,Zn-superoxide dismutase gene (SOD1) (E.C. No. 1.15.1.1) is generally recognized as... more The mutated Cu,Zn-superoxide dismutase gene (SOD1) (E.C. No. 1.15.1.1) is generally recognized as a pathological cause of 20% of the familial form of Amyotrophic Lateral Sclerosis (ALS). However, several pieces of evidence also show that wild-type SOD1, under conditions of cellular stress, is implicated in a significant fraction of sporadic ALS cases, which represent 90% of ALS patients. Herein, we describe an abnormally high level of SOD1 transcript in spinal cord, brain stem and lymphocytes of sporadic ALS patients. Protein expression studies show a similar or lower amount of SOD1 in affected brain areas and lymphocytes, respectively. No differences are found in brain regions (cerebellum and non-motor cerebral cortex) not involved in the ALS neurodegenerative processes. In this report, cell and disease specificity are shown since no mRNA SOD1 increase is observed in sporadic ALS fibroblasts or in lymphocytes of patients affected by Alzheimer's disease. These findings provide new insight and understanding of the pathologic causes of sporadic forms of ALS and allow a possible explanation for the molecular involvement of wild-type SOD1.
Uploads
Papers by Cristina Cereda