Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Corey Anderson

    Corey Anderson

    ABSTRACTPost-transcriptional regulation by miRNAs is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on... more
    ABSTRACTPost-transcriptional regulation by miRNAs is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on pathophysiology remain poorly understood. We applied AGO CLIP to systematically elucidate altered miRNA-target interactions in brain following ischemia/reperfusion (I/R) injury. Among 1,190 identified, most prominent was the cumulative loss of target regulation by miR-29 family members. Integration of translational and time-course RNA profiles revealed a dynamic mode of miR-29 target de-regulation, led by acute translational activation and later increase in RNA levels, allowing rapid proteomic changes to take effect. These functional regulatory events rely on canonical and non-canonical miR-29 binding and engage glutamate reuptake signals to control local glutamate levels. These results uncover a miRNA target network that acts acutely to maintain b...
    Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy... more
    Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a...