Four sediment cores representing adjacent mudflat and mangrove sub-environments of middle estuary... more Four sediment cores representing adjacent mudflat and mangrove sub-environments of middle estuary (Shastri) were analyzed for sand, silt, clay, and organic carbon. Total metal concentration of iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn), chromium (Cr), copper (Cu), cobalt (Co), and lead (Pb) and chemical speciation of Fe, Mn, and Co on selected samples was also carried out on mudflat cores. The sediments in the upper middle estuary were found to be deposited under highly varying hydrodynamic energy conditions; whereas lower middle estuary experienced relatively stable hydrodynamic energy conditions with time. The tributary joining the river near the upper middle estuary is found to be responsible for the addition of enhanced organic carbon and metal concentrations. Speciation study indicated Fe and Co are from natural lithogenic origin while Mn is derived from anthropogenic sources. Higher Mn and Co than apparent effects threshold can pose a high risk of toxicity to organisms associated with these sediments.
Four sediment cores representing adjacent mudflat and mangrove sub-environments of middle estuary... more Four sediment cores representing adjacent mudflat and mangrove sub-environments of middle estuary (Shastri) were analyzed for sand, silt, clay, and organic carbon. Total metal concentration of iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn), chromium (Cr), copper (Cu), cobalt (Co), and lead (Pb) and chemical speciation of Fe, Mn, and Co on selected samples was also carried out on mudflat cores. The sediments in the upper middle estuary were found to be deposited under highly varying hydrodynamic energy conditions; whereas lower middle estuary experienced relatively stable hydrodynamic energy conditions with time. The tributary joining the river near the upper middle estuary is found to be responsible for the addition of enhanced organic carbon and metal concentrations. Speciation study indicated Fe and Co are from natural lithogenic origin while Mn is derived from anthropogenic sources. Higher Mn and Co than apparent effects threshold can pose a high risk of toxicity to organisms associated with these sediments.
Uploads
Papers by Dipti R G Dessai