Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Farina Moghaddam

    This study aimed to fabricate a glass ionomer cement/diopside (GIC/DIO) nanocomposite to improve its mechanical properties for biomaterials applications. For this purpose, diopside was synthesized using a sol–gel method. Then, for... more
    This study aimed to fabricate a glass ionomer cement/diopside (GIC/DIO) nanocomposite to improve its mechanical properties for biomaterials applications. For this purpose, diopside was synthesized using a sol–gel method. Then, for preparing the nanocomposite, 2, 4, and 6 wt% diopside were added to a glass ionomer cement (GIC). Subsequently, X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and Fourier transform infrared spectrophotometry (FTIR) analyses were used to characterize the synthesized diopside. Furthermore, the compressive strength, microhardness, and fracture toughness of the fabricated nanocomposite were evaluated, and a fluoride-releasing test in artificial saliva was also applied. The highest concurrent enhancements of compressive strength (1155.7 MPa), microhardness (148 HV), and fracture toughness (5.189 MPa·m1/2) were observed for the glass ionomer cement (GIC) with 4 wt% diopside nanocomposite. In addition, the result...