A family of artificial proteins, named αRep, based on a natural family of helical repeat was prev... more A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly seque...
Intracellularly expressed recombinant antibodies, or intrabodies, are powerful tools for cell bio... more Intracellularly expressed recombinant antibodies, or intrabodies, are powerful tools for cell biology studies as well as therapeutic applications. Cell biologists use them to either block the intracellular antibody target or to image endogenous target dynamics. We describe here methods to select recombinant antibodies from antibody phage display libraries and to subsequently express them as fluorescent intrabodies.
In a previous study we demonstrated that a homeobox peptide corresponding to the 60 amino acid lo... more In a previous study we demonstrated that a homeobox peptide corresponding to the 60 amino acid long DNA-binding region of the Drosophila antennapedia homeo-protein was capable of crossing the plasma membrane of cells in culture. This finding has led us to investigate whether chimeric molecules encompassing the homeobox would behave in a similar manner. We demonstrate here that a peptide of 93 amino acids composed of the homeobox and of the C terminus of Rab3, a small GTP-binding protein, crosses the membrane of myoblasts, myotubes and neurons and is conveyed to their nuclei. This transport is highly efficient, is observed in all the cells present in the culture and occurs at 37 degrees C and 12 degrees C without quantitative peptide degradation. Beyond its theoretical implications for our current views on cellular interactions, this finding could have technical repercussions on the development of drugs with intracellular targets.
... Espreafico, EM, Cheney, RE, Matteoli, M., Nascimento, AAC, De Camilli, PV, Larson, RE and ...... more ... Espreafico, EM, Cheney, RE, Matteoli, M., Nascimento, AAC, De Camilli, PV, Larson, RE and ... Feiguin, F., Ferreira, A., Kosik, KS and Caceres, A.(1994) Kinesin-mediated organelle translocation ... Gibbons, BH, Asai, DJ, Tang, W.-JY, Hays, TS and Gibbons, IR (1994) Phytogeny ...
Biological membranes in eukaryotes contain a large variety of proteins and lipids often distribut... more Biological membranes in eukaryotes contain a large variety of proteins and lipids often distributed in domains in plasma membrane and endomembranes. Molecular mechanisms responsible for the transport and the organization of these membrane domains along the secretory pathway still remain elusive. Here we show that vesicular SNARE TI-VAMP/VAMP7 plays a major role in membrane domains composition and transport. We found that the transport of exogenous and endogenous GPI-anchored proteins was altered in fibroblasts isolated from VAMP7-knockout mice. Furthermore, disassembly and reformation of the Golgi apparatus induced by Brefeldin A treatment and washout were impaired in VAMP7-depleted cells, suggesting that loss of VAMP7 expression alters biochemical properties and dynamics of the Golgi apparatus. In addition, lipid profiles from these knockout cells indicated a defect in glycosphingolipids homeostasis. We conclude that VAMP7 is required for effective transport of GPI-anchored protein...
The role of early secretory trafficking in the regulation of cell motility remains incompletely u... more The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed-fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.
GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi... more GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi ...
It has previously been shown that transport of newly synthesized proteins and the structure of th... more It has previously been shown that transport of newly synthesized proteins and the structure of the Golgi complex are affected in the Chinese hamster ovary cell line ldlF, which bears a temperature-sensitive mutation in the Coat protein I (COPI) subunit epsilon-COP (Guo, Q., Vasile, E., and Krieger, M. (1994) J. Cell Biol. 125, 1213-1224; Hobbie, L., Fisher, A. S., Lee, S., Flint, A., and Krieger, M. (1994) J. Biol. Chem. 269, 20958-20970). Here, we pinpoint the site of the secretory block to an intermediate compartment between the endoplasmic reticulum (ER) and the Golgi complex and show that the distributions of ER-Golgi recycling proteins, such as KDEL receptor and p23, as well as resident Golgi proteins, such as mannosidase II, are accordingly affected. At the nonpermissive temperature, neither the stability of the COPI complex nor its recruitment to donor Golgi membranes is affected. However, the binding of coatomer to the dilysine-based ER-retrieval motif is impaired in the abs...
In mammalian cells, secretory proteins are transported to their destination compartment via the s... more In mammalian cells, secretory proteins are transported to their destination compartment via the secretory pathway. Cargos start their journey in the endoplasmic reticulum and then reach the Golgi complex where they are processed and sorted to be delivered to their target intracellular compartment. To analyze and visualize this flow of proteins, one needs to synchronize their transport. We recently developed the retention using selective hooks (RUSH) system enabling simultaneous and synchronous release of secretory cargos from the endoplasmic reticulum in a population of cells. Here, we describe how to subclone the gene coding for a cargo of interest into a RUSH plasmid and to monitor its synchronized transport along the secretory pathway in fixed samples and in living cells.
Proteins destined for the secretory pathway start their journey in the endoplasmic reticulum and ... more Proteins destined for the secretory pathway start their journey in the endoplasmic reticulum and transit through the Golgi complex to be delivered to their destination compartment. Over the last decades, several fluorescence-based assays were developed to analyze the transport of proteins along the secretory pathway. In this review, we briefly introduce the existing tools. We provide detailed protocols to allow the reader to use the newly developed secretory assay termed the RUSH system (Retention Using Selective Hooks). This assay enables the synchronous release of one to three cargos of interest from a donor compartment (the endoplasmic reticulum). Analysis of the transport steps of the cargos from the donor compartment to the acceptor compartment is accomplished by fluorescence-based methods.
To be secreted or transported to their target compartments, newly synthesized proteins leave the ... more To be secreted or transported to their target compartments, newly synthesized proteins leave the endoplasmic reticulum to reach the Golgi apparatus, where they are processed and sorted toward their final destinations along the secretory pathway. It is now clear that many Golgi-intersecting and non-intersecting pathways exist in cells to carry out proper transport, modification, and addressing. To analyze and visualize the intracellular trafficking of any secretory protein, we developed the retention using selective hooks (RUSH) system. This assay allows the simultaneous release of a pool of particular secretory proteins from the endoplasmic reticulum and the monitoring of their anterograde trafficking. The use of the RUSH system is detailed in these protocols, from sub-cloning the sequence coding for the protein of interest into RUSH plasmids to visualization of its trafficking.
A family of artificial proteins, named αRep, based on a natural family of helical repeat was prev... more A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly seque...
Intracellularly expressed recombinant antibodies, or intrabodies, are powerful tools for cell bio... more Intracellularly expressed recombinant antibodies, or intrabodies, are powerful tools for cell biology studies as well as therapeutic applications. Cell biologists use them to either block the intracellular antibody target or to image endogenous target dynamics. We describe here methods to select recombinant antibodies from antibody phage display libraries and to subsequently express them as fluorescent intrabodies.
In a previous study we demonstrated that a homeobox peptide corresponding to the 60 amino acid lo... more In a previous study we demonstrated that a homeobox peptide corresponding to the 60 amino acid long DNA-binding region of the Drosophila antennapedia homeo-protein was capable of crossing the plasma membrane of cells in culture. This finding has led us to investigate whether chimeric molecules encompassing the homeobox would behave in a similar manner. We demonstrate here that a peptide of 93 amino acids composed of the homeobox and of the C terminus of Rab3, a small GTP-binding protein, crosses the membrane of myoblasts, myotubes and neurons and is conveyed to their nuclei. This transport is highly efficient, is observed in all the cells present in the culture and occurs at 37 degrees C and 12 degrees C without quantitative peptide degradation. Beyond its theoretical implications for our current views on cellular interactions, this finding could have technical repercussions on the development of drugs with intracellular targets.
... Espreafico, EM, Cheney, RE, Matteoli, M., Nascimento, AAC, De Camilli, PV, Larson, RE and ...... more ... Espreafico, EM, Cheney, RE, Matteoli, M., Nascimento, AAC, De Camilli, PV, Larson, RE and ... Feiguin, F., Ferreira, A., Kosik, KS and Caceres, A.(1994) Kinesin-mediated organelle translocation ... Gibbons, BH, Asai, DJ, Tang, W.-JY, Hays, TS and Gibbons, IR (1994) Phytogeny ...
Biological membranes in eukaryotes contain a large variety of proteins and lipids often distribut... more Biological membranes in eukaryotes contain a large variety of proteins and lipids often distributed in domains in plasma membrane and endomembranes. Molecular mechanisms responsible for the transport and the organization of these membrane domains along the secretory pathway still remain elusive. Here we show that vesicular SNARE TI-VAMP/VAMP7 plays a major role in membrane domains composition and transport. We found that the transport of exogenous and endogenous GPI-anchored proteins was altered in fibroblasts isolated from VAMP7-knockout mice. Furthermore, disassembly and reformation of the Golgi apparatus induced by Brefeldin A treatment and washout were impaired in VAMP7-depleted cells, suggesting that loss of VAMP7 expression alters biochemical properties and dynamics of the Golgi apparatus. In addition, lipid profiles from these knockout cells indicated a defect in glycosphingolipids homeostasis. We conclude that VAMP7 is required for effective transport of GPI-anchored protein...
The role of early secretory trafficking in the regulation of cell motility remains incompletely u... more The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed-fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.
GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi... more GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi ...
It has previously been shown that transport of newly synthesized proteins and the structure of th... more It has previously been shown that transport of newly synthesized proteins and the structure of the Golgi complex are affected in the Chinese hamster ovary cell line ldlF, which bears a temperature-sensitive mutation in the Coat protein I (COPI) subunit epsilon-COP (Guo, Q., Vasile, E., and Krieger, M. (1994) J. Cell Biol. 125, 1213-1224; Hobbie, L., Fisher, A. S., Lee, S., Flint, A., and Krieger, M. (1994) J. Biol. Chem. 269, 20958-20970). Here, we pinpoint the site of the secretory block to an intermediate compartment between the endoplasmic reticulum (ER) and the Golgi complex and show that the distributions of ER-Golgi recycling proteins, such as KDEL receptor and p23, as well as resident Golgi proteins, such as mannosidase II, are accordingly affected. At the nonpermissive temperature, neither the stability of the COPI complex nor its recruitment to donor Golgi membranes is affected. However, the binding of coatomer to the dilysine-based ER-retrieval motif is impaired in the abs...
In mammalian cells, secretory proteins are transported to their destination compartment via the s... more In mammalian cells, secretory proteins are transported to their destination compartment via the secretory pathway. Cargos start their journey in the endoplasmic reticulum and then reach the Golgi complex where they are processed and sorted to be delivered to their target intracellular compartment. To analyze and visualize this flow of proteins, one needs to synchronize their transport. We recently developed the retention using selective hooks (RUSH) system enabling simultaneous and synchronous release of secretory cargos from the endoplasmic reticulum in a population of cells. Here, we describe how to subclone the gene coding for a cargo of interest into a RUSH plasmid and to monitor its synchronized transport along the secretory pathway in fixed samples and in living cells.
Proteins destined for the secretory pathway start their journey in the endoplasmic reticulum and ... more Proteins destined for the secretory pathway start their journey in the endoplasmic reticulum and transit through the Golgi complex to be delivered to their destination compartment. Over the last decades, several fluorescence-based assays were developed to analyze the transport of proteins along the secretory pathway. In this review, we briefly introduce the existing tools. We provide detailed protocols to allow the reader to use the newly developed secretory assay termed the RUSH system (Retention Using Selective Hooks). This assay enables the synchronous release of one to three cargos of interest from a donor compartment (the endoplasmic reticulum). Analysis of the transport steps of the cargos from the donor compartment to the acceptor compartment is accomplished by fluorescence-based methods.
To be secreted or transported to their target compartments, newly synthesized proteins leave the ... more To be secreted or transported to their target compartments, newly synthesized proteins leave the endoplasmic reticulum to reach the Golgi apparatus, where they are processed and sorted toward their final destinations along the secretory pathway. It is now clear that many Golgi-intersecting and non-intersecting pathways exist in cells to carry out proper transport, modification, and addressing. To analyze and visualize the intracellular trafficking of any secretory protein, we developed the retention using selective hooks (RUSH) system. This assay allows the simultaneous release of a pool of particular secretory proteins from the endoplasmic reticulum and the monitoring of their anterograde trafficking. The use of the RUSH system is detailed in these protocols, from sub-cloning the sequence coding for the protein of interest into RUSH plasmids to visualization of its trafficking.
Uploads
Papers by Franck Perez