Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    G. Dinos

    Azithromycin, a derivative of erythromycin with improved activity against Gram-negative bacteria, exhibits a marginal inhibition effect in a model system derived from Escherichia coli, in which a peptide bond is formed between puromycin... more
    Azithromycin, a derivative of erythromycin with improved activity against Gram-negative bacteria, exhibits a marginal inhibition effect in a model system derived from Escherichia coli, in which a peptide bond is formed between puromycin and AcPhe-tRNA bound at the P-site of poly(U)-programmed ribosomes. This renders the study of azithromycin interaction with Ac[(3)H]Phe-tRNA. poly(U). 70S ribosome complex (complex C) impossible, if we analyze its effect on peptide bond formation. To overcome this problem, we have used an alternative approach to investigate kinetically the azithromycin interaction with complex C and to compare the azithromycin binding properties with those of erythromycin. This approach was based on the ability of azithromycin to compete with tylosin, a macrolide antibiotic strongly inhibiting the puromycin reaction. Detailed kinetic analysis revealed that the encounter complex CA between complex C and azithromycin (A) undergoes a slow isomerization to a tighter comp...
    In a cell-free system derived from Escherichia coli, we investigated the inhibition of peptide bond formation by blasticidin S at 100 mM NH4+ and 5 degrees C or at 50 mM NH4+ and 25 degrees C. At both conditions, a transient phase of... more
    In a cell-free system derived from Escherichia coli, we investigated the inhibition of peptide bond formation by blasticidin S at 100 mM NH4+ and 5 degrees C or at 50 mM NH4+ and 25 degrees C. At both conditions, a transient phase of competitive inhibition is observed, followed by a mixed noncompetitive phase. The two phases of inhibition are compatible with a model in which a slow isomerization of the ribosome-drug complex occurs, as a result of ribosomal conformational changes. After this step, the mutually exclusive binding between acceptor substrate and antibiotic is converted to simultaneous binding. In comparison with a previous study carried out at 100 mM NH4+ and 25 degrees C, the present results demonstrate that the ribosomal conformational changes induced by blasticidin S can occur irrespectively of the reaction temperature and the ionic conditions.
    New 16-membered 9-aryl-alkyl oxime derivatives of 5-O-mycaminosyl-tylonolid (OMT) have recently been prepared and were found to exhibit high activity against macrolide-resistant strains. In this study, we show that these compounds do not... more
    New 16-membered 9-aryl-alkyl oxime derivatives of 5-O-mycaminosyl-tylonolid (OMT) have recently been prepared and were found to exhibit high activity against macrolide-resistant strains. In this study, we show that these compounds do not affect the binding of tRNAs to ribosomes in a cell-free system derived from Escherichia coli and that they cannot inhibit peptidyltransferase, peptidyl-tRNA translocation, or poly(U)-dependent poly(Phe) synthesis. However, they severely inhibit poly(A)-dependent poly(Lys) synthesis and compete with erythromycin or tylosin for binding to common or partially overlapping sites in the ribosome. According to footprinting analysis, the lactone ring of these compounds seems to occupy the classic binding site of macrolides that is located at the entrance of the exit tunnel, whereas the extending alkyl-aryl side chain seems to penetrate deeper in the tunnel, where it protects nucleoside A752 in domain II of 23S rRNA. In addition, this side chain causes an increased affinity for mutant ribosomes that may be responsible for their effectiveness against macrolide resistant strains. As revealed by detailed kinetic analysis, these compounds behave as slow-binding ligands interacting with functional ribosomal complexes through a one-step mechanism. This type of inhibitor has several attractive features and offers many chances in designing new potent drugs.
    The crystal structures of the universal translation-initiation inhibitors edeine and pactamycin bound to ribosomal 30S subunit have revealed that edeine induces base pairing of G693:C795, residues that constitute the pactamycin binding... more
    The crystal structures of the universal translation-initiation inhibitors edeine and pactamycin bound to ribosomal 30S subunit have revealed that edeine induces base pairing of G693:C795, residues that constitute the pactamycin binding site. Here, we show that base pair formation by addition of edeine inhibits tRNA binding to the P site by preventing codon-anticodon interaction and that addition of pactamycin, which rebreaks the base pair, can relieve this inhibition. In addition, edeine induces translational misreading in the A site, at levels comparable to those induced by the classic misreading antibiotic streptomycin. Binding of pactamycin between residues G693 and C795 strongly inhibits translocation with a surprising tRNA specificity but has no effect on translation initiation, suggesting that reclassification of this antibiotic is necessary. Collectively, these results suggest that the universally conserved G693:C795 residues regulate tRNA binding at the P site of the ribosome and influence translocation efficiency.
    A systematic procedure for the kinetic study of irreversible inhibition when the enzyme is consumed in the reaction which it catalyses, has been developed and analysed. Whereas in most reactions the enzymes are regenerated after each... more
    A systematic procedure for the kinetic study of irreversible inhibition when the enzyme is consumed in the reaction which it catalyses, has been developed and analysed. Whereas in most reactions the enzymes are regenerated after each catalytic event and serve as reusable transacting effectors, in the consumed enzymes each catalytic center participates only once and there is no enzyme turnover. A systematic kinetic analysis of irreversible inhibition of these enzyme reactions is presented. Based on the algebraic criteria proposed in this work, it should be possible to evaluate either the mechanism of inhibition (complexing or non-complexing), or the type of inhibition (competitive, non-competitive, uncompetitive, mixed non-competitive). In addition, all kinetic constants involved in each case could be calculated. An experimental application of this analysis is also presented, concerning peptide bond formation in vitro. Using the puromycin reaction, which is a model reaction for the study of peptide bond formation in vitro and which follows the same kinetic law as the enzymes under study, we have found that: (i) the antibiotic spiramycin inhibits the puromycin reaction as a competitive irreversible inhibitor in a one step mechanism with an association rate constant equal to 1.3 x 10(4) M-1 s-1 and, (ii) hydroxylamine inhibits the same reaction as an irreversible non-competitive inhibitor also in a one step mechanism with a rate constant equal to 1.6 x 10(-3) M-1 s-1.
    ABSTRACT Erythromycin and tylosin are 14- and 16-membered lactone ring macrolides, respectively. The current work shows by means of kinetic and chemical footprinting analysis that both antibiotics bind to Escherichia coli ribosomes in a... more
    ABSTRACT Erythromycin and tylosin are 14- and 16-membered lactone ring macrolides, respectively. The current work shows by means of kinetic and chemical footprinting analysis that both antibiotics bind to Escherichia coli ribosomes in a two-step process. The first step established rapidly, involves a low-affinity binding site placed at the entrance of the exit tunnel in the large ribosomal subunit, where macrolides bind primarily through their hydrophobic portions. Subsequently, slow conformational changes mediated by the antibiotic hydrophilic portion push the drugs deeper into the tunnel, in a high-affinity site. Compared with erythromycin, tylosin shifts to the high-affinity site more rapidly, due to the interaction of the mycinose sugar of the drug with the loop of H35 in domain II of 23 S rRNA. Consistently, mutations of nucleosides U2609 and U754 implicated in the high-affinity site reduce the shift of tylosin to this site and destabilize, respectively, the final drug-ribosome complex. The weak interaction between tylosin and the ribosome is Mg2+ independent, unlike the tight binding. In contrast, both interactions between erythromycin and the ribosome are reduced by increasing concentrations of Mg2+ ions. Polyamines attenuate erythromycin affinity for the ribosome at both sequential steps of binding. In contrast, polyamines facilitate the initial binding of tylosin, but exert a detrimental, more pronounced, effect on the drug accommodation at its final position. Our results emphasize the role of the particular interactions that side chains of tylosin and erythromycin establish with 23 S rRNA, which govern the exact binding process of each drug and its response to the ionic environment.
    The inhibition of peptide bond formation by tylosin, a 16-membered ring macrolide, was studied in a model system derived from Escherichia coli. In this cell-free system, a peptide bond is formed between puromycin (acceptor substrate) and... more
    The inhibition of peptide bond formation by tylosin, a 16-membered ring macrolide, was studied in a model system derived from Escherichia coli. In this cell-free system, a peptide bond is formed between puromycin (acceptor substrate) and AcPhe-tRNA (donor substrate) bound at the P-site of poly(U)-programmed ribosomes. It is shown that tylosin inhibits puromycin reaction as a slow-binding, slowly reversible inhibitor. Detailed kinetic analysis reveals that tylosin (I) reacts rapidly with complex C, i.e., the AcPhe-tRNA. poly(U).70S ribosome complex, to form the encounter complex CI, which then undergoes a slow isomerization and is converted to a tight complex, CI, inactive toward puromycin. These events are described by the scheme C + I <==> (K(i)) CI <==> (k(4), k(5)) CI. The K(i), k(4), and k(5) values are equal to 3 microM, 1.5 min(-1), and 2.5 x 10(-3) min(-1), respectively. The extremely low value of k(5) implies that the inactivation of complex C by tylosin is almost irreversible. The irreversibility of the tylosin effect on peptide bond formation is significant for the interpretation of this antibiotic's therapeutic properties; it also renders the tylosin reaction a useful tool in the study of other macrolides failing to inhibit the puromycin reaction but competing with tylosin for common binding sites on the ribosome. Thus, the tylosin reaction, in conjunction with the puromycin reaction, was applied to investigate the erythromycin mode of action. It is shown that erythromycin (Er), like tylosin, interacts with complex C according to the kinetic scheme C + Er <==> (K(er)) CEr <==> (k(6), k(7)) C*Er and forms a tight complex, CEr, which remains active toward puromycin. The determination of K(er), k(6), and k(7) enables us to classify erythromycin as a slow-binding ligand of ribosomes.
    Ketolides, the third generation of expanded-spectrum macrolides, have in the last years become a successful weapon in the endless war against macrolide-resistant pathogens. Ketolides are semisynthetic derivatives of the naturally produced... more
    Ketolides, the third generation of expanded-spectrum macrolides, have in the last years become a successful weapon in the endless war against macrolide-resistant pathogens. Ketolides are semisynthetic derivatives of the naturally produced macrolide erythromycin, displaying not only improved activity against some erythromycin-resistant strains but also increased bactericidal activity as well as inhibitory effects at lower drug concentrations. In this study, we present a series of novel ketolides carrying alkyl-aryl side chains at the C-6 position of the lactone ring and, additionally, one or two fluorine atoms attached either directly to the lactone ring at the C-2 position or indirectly via the C-13 position. According to our genetic and biochemical studies, these novel ketolides occupy the known macrolide binding site at the entrance of the ribosomal tunnel and exhibit lower MIC values against wild-type or mutant strains than erythromycin. In most cases, the ketolides display activities comparable to or better than the clinically used ketolide telithromycin. Chemical protection experiments using Escherichia coli ribosomes bearing U2609C or U754A mutations in 23S rRNA suggest that the alkyl-aryl side chain establishes an interaction with the U2609-A752 base pair, analogous to that observed with telithromycin but unlike the interactions formed by cethromycin. These findings reemphasize the versatility of the alkyl-aryl side chains with respect to species specificity, which will be important for future design of improved antimicrobial agents.