Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
HOSSAIN AHAMED 1711678042

    HOSSAIN AHAMED 1711678042

    Different epidemiological compartmental models have been presented to predict the transmission dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we have proposed a fuzzy rule-based... more
    Different epidemiological compartmental models have been presented to predict the transmission dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we have proposed a fuzzy rule-based Susceptible-Exposed-Infectious-Recovered-Death ([Formula: see text]) compartmental model considering a new dynamic transmission possibility variable as a function of time and three different fuzzy linguistic intervention variables to delineate the intervention and transmission heterogeneity on SARS-CoV-2 viral infection. We have analyzed the datasets of active cases and total death cases of China and Bangladesh. Using our model, we have predicted active cases and total death cases for China and Bangladesh. We further presented the correspondence of different intervention measures in relaxing the transmission possibility. The proposed model delineates the correspondence between the intervention measures as fuzzy subsets and the predicted active cases and total dea...
    Recently COVID-19 pandemic has affected the whole world quite seriously. The number of new infectious cases and death cases are rapidly increasing over time. In this study, a theoretical linguistic fuzzy rule-based... more
    Recently COVID-19 pandemic has affected the whole world quite seriously. The number of new infectious cases and death cases are rapidly increasing over time. In this study, a theoretical linguistic fuzzy rule-based Susceptible-Exposed-Infectious-Isolated-Recovered (SEIIsR) compartmental model has been proposed to predict the dynamics of the transmission of COVID-19 over time considering population immunity and infectiousness heterogeneity based on viral load in the model. The model’s equilibrium points have been calculated and stability analysis of the model’s equilibrium points has been conducted. Consequently, the fuzzy basic reproduction number, R0f of the fuzzy model has been formulated. Finally, the temporal dynamics of different compartmental populations with immunity and infectiousness heterogeneity using the fuzzy Mamdani model are delineated and some disease control policies have been suggested to get over the infection in no time.