To study the thermal stability of recombinant human deoxyribonuclease I (rhDNase) in aqueous solu... more To study the thermal stability of recombinant human deoxyribonuclease I (rhDNase) in aqueous solutions. Differential scanning calorimetry (DSC) was used to measure the denaturation or melting temperature (T(m)) and enthalpy (H(m)) of rhDNase. The effects of denaturants (guanidine HCl and urea) and additives (mainly divalent cations and disaccharides) were investigated at pH 6-7. The T(m) and H(m) of rhDNase in pure water were measured as 67.4 degrees C and 18.0 J/g respectively, values typical of globular proteins. The melting peak disappeared on re-running the sample after cooling to room temperature, indicating that the thermal denaturation was irreversible. The latter was due to the occurrence of aggregation accompanying the unfolding process of rhDNase. Size exclusion chromatography indicated that during heat denaturation, rhDNase formed soluble high molecular weight aggregates with a molecular size >300kD estimated by the void volume. Of particular interest are the divalent ...
Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifi... more Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifically prepared colloidal probe and any chosen substrate using the Atomic Force Microscope (AFM), can provide key insights into physical interactions present within colloidal systems. Colloidal systems are widely existent in several applications including, pharmaceuticals, foods, paints, paper, soil and minerals, detergents, printing and much more.1-3 Furthermore, colloids can exist in many states such as emulsions, foams and suspensions. Using colloidal probe nanoscopy one can obtain key information on the adhesive properties, binding energies and even gain insight into the physical stability and coagulation kinetics of the colloids present within. Additionally, colloidal probe nanoscopy can be used with biological cells to aid in drug discovery and formulation development. In this paper we describe a method for conducting colloidal probe nanoscopy, discuss key factors that are important...
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2014
Colloidal probe microscopy (CPM) is a quantitative predictive tool, which can offer insight into ... more Colloidal probe microscopy (CPM) is a quantitative predictive tool, which can offer insight into particle behavior in suspension pressurized metered dose inhalers (pMDIs). Although CPM instantaneous force measurements, which involve immediate retraction of the probe upon sample contact, can provide information on inter-particle attractive forces, they lack the ability to appropriately imitate all critical particle pMDI interactions (e.g., particle re-dispersion after prolonged pMDI storage). In this paper, two novel dwell force techniques - indentation and deflection dwell - were employed to mimic long-term particle interactions present in pMDIs, using particles of various internal structures and a model liquid propellant (2H,3H perfluoropentane) as a model system. Dwell measurements involve particle contact for an extended period of time. In deflection dwell mode the probe is held at a specific position, while in indentation dwell mode the probe is forced into the sample with a con...
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2014
Nucleic acids have the potential to be used as therapies or vaccines for many different types of ... more Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease, but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar lavage fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impactor (NGI), gel retardat...
Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to ... more Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to produce fine powders of recombinant human deoxyribonuclease (rhDNase), lysozyme-lactose and rhDNase- lactose powders from aqueous based solutions.
Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to ... more Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to generate microparticles of proteins suitable for aerosol delivery from aqueous-based solutions.
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung, 1993
Single photon emission computed tomography (SPECT) has distinct advantages over the conventional ... more Single photon emission computed tomography (SPECT) has distinct advantages over the conventional planar imaging technique in generating more information about radionuclide distribution within the body. The general application of SPECT in lung studies has been extensive, but its specific use in aerosol research is still uncommon. This review focuses on the applications, the advantages and limitations, and the potential of quantification of SPECT in aerosol studies.
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung, 2006
Development of dry powder aerosol delivery system involves powder production, formulation, disper... more Development of dry powder aerosol delivery system involves powder production, formulation, dispersion, delivery, and deposition of the powder aerosol in the airways. Insufficiency of conventional powder production by crystallization and milling has led to development of alternative techniques. Over the last decade, performance of powder formulations has been improved significantly through the use of engineered drug particles and excipient systems which are (i) of low aerodynamic diameters (being porous or of low particle density), and/or (ii) less cohesive and adhesive (via corrugated surfaces, low bulk density, reduced surface energy and particle interaction, hydrophobic additives, and fine carrier particles). Early insights into particle forces and surface energy that help explain the improvement have been provided by analytical techniques such as the atomic force microscopy (AFM) and inverse gas chromatography (IGC). Relative humidity is critical to the performance of dry powder inhaler (DPI) products via capillary force and electrostatic interaction. Electrostatic charge of different particle size fractions of an aerosol can now be measured using a modified electrical low-pressure impactor (ELPI). Compared with powders, much less work has been done on the inhaler devices at the fundamental level. Most recently, computational fluid dynamics has been applied to understand how the inhaler design (such as mouthpiece, grid structure, air inlet) affects powder dispersion. The USP throat is known to under-represent the oropharyngeal deposition of DPI aerosols. Studies using magnetic resonance imaging (MRI) model casts have been undertaken to explain the inter- and intra- subject variation in oropharyngeal deposition. Most of the lung deposition studies performed on commercial products did not allow a thorough understanding of the determinants affecting in vivo lung deposition. A more systematic approach would be necessary to build a useful database on the dependence of lung deposition on the breathing parameters, inhaler design, and powder formulation properties.
... condensation) [145]. Wet milling using grinding media of diameter ≤ 1 mm has been used to pro... more ... condensation) [145]. Wet milling using grinding media of diameter ≤ 1 mm has been used to produce crystalline nanoparticles (NanoCrys-tal®; Elan PharmaceuticalTechnologies), of sizes < 400 nm, suitable for nebulisation. Milling in ...
Nedocromil sodium inhibits the response to exercise-induced asthma (EIA). Mannitol given as a pow... more Nedocromil sodium inhibits the response to exercise-induced asthma (EIA). Mannitol given as a powder by inhalation is an os- motic stimulus that identifies EIA. We studied the acute effect of nedocromil on airway responsiveness to mannitol in 24 asthmatic subjects. After a control day, nedocromil (8 mg) or its placebo was administered randomized, double blind, 10 min before a chal-
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung, 2002
Pharmaceutical aerosol delivery is undergoing dramatic changes in both inhaler device and formula... more Pharmaceutical aerosol delivery is undergoing dramatic changes in both inhaler device and formulation aspects. There is a rapid move from the traditional propellant-driven metered dose inhalers to the high performance liquid atomizers and dry powder inhalers (DPIs). DPIs involving the dispersion of powders into aerosols by an inhaler device are particularly attractive as dry powders generally have greater chemical stability than liquids used in atomizers. Delivery of therapeutic proteins as dry powder aerosols is of high commerical interest. However, production and formulation of dry powders for inhalation can be difficult and challenging due to the potential physical instability of the powder. Dry powders consisting of micro- or nano-sized particles are inherently adhesive and cohesive, leading to highly variable dose accuracy and poor aerosol performance. Particle engineering via the use of appropriate pharmaceutical excipients and processing parameters can produce particles of optimal morphologies and surface properties which would enhance aerosol generation. Some of the key determinants for successful dispersion of pharmaceutical powders suitable for inhalation are reviewed with an emphasis on the practical significance.
Purpose. We investigated the effect of primary powder polydispersity on the generation of pharmac... more Purpose. We investigated the effect of primary powder polydispersity on the generation of pharmaceutical powder aerosols, using mannitol and bovine serum albu- min (BSA) as the model compounds. Methods. Primary powders with different polydispersity but comparable physical and mass median aerodynamic diameter (MMAD) were obtained from spray drying. The polydispersity, i.e. the width of the particle size distribution, of the
Successful delivery of dry powder aerosols to the lung requires careful consideration of the powd... more Successful delivery of dry powder aerosols to the lung requires careful consideration of the powder production process, formulation and inhaler device. Newer production methods are emerging to prepare powders with desirable characteristics for inhalational administration. The conventional formulation approach of adding coarse lactose carriers to the drug to form binary powder systems to enhance powder flow and dispersion properties has
Purpose. To study the effect of particle size, air flow and inhaler type on the dispersion of spr... more Purpose. To study the effect of particle size, air flow and inhaler type on the dispersion of spray dried mannitol powders into aerosols.
To date, various nanodrug systems have been developed for different routes of administration, whi... more To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges.
One of the most common causes of illnesses in humans is from respiratory tract infections caused ... more One of the most common causes of illnesses in humans is from respiratory tract infections caused by bacterial, viral or fungal pathogens. Inhaled anti-infective drugs are crucial for the prophylaxis and treatment of respiratory tract infections. The benefit of anti-infective drug delivery via inhalation is that it affords delivery of sufficient therapeutic dosages directly to the primary site of infection, while minimizing the risks of systemic toxicity or avoiding potential suboptimal pharmacokinetics/pharmacodynamics associated with systemic drug exposure. This review provides an up-to-date treatise of approved and novel developmental inhaled anti-infective agents, with particular attention to effective strategies for their use, pulmonary pharmacokinetic properties and safety.
To study if electrostatic charge initially present in mannitol powder plays a role in the generat... more To study if electrostatic charge initially present in mannitol powder plays a role in the generation of aerosols, mannitol was unipolarly charged to varying magnitudes by tumbling the powder inside containers of different materials. The resulting charge in the powder was consistent with predictions from the triboelectric charging theories, based on the work function values from literature and electron transfer tendencies from measurement of contact angle. The latter generated a parameter, gamma(-)/gamma+, which is a measure of the electron-donating capacity relative to the electron-accepting tendency of material. Lowering the work function value or increasing the gamma(-)/gamma+ ratio of the container material resulted in mannitol being more negatively charged, and vice versa. After charging, the powder was dispersed from an Aerolizer(R), at 30 and 60 L/min, to study the aerosol performance. Irrespective of the charge level, the powder showed similar fine particle fraction, emitted dose and device retention at a given flow rate, indicating that charge induced by different containers during tumbling does not play a significant role in mannitol powder aerosolisation.
To study the thermal stability of recombinant human deoxyribonuclease I (rhDNase) in aqueous solu... more To study the thermal stability of recombinant human deoxyribonuclease I (rhDNase) in aqueous solutions. Differential scanning calorimetry (DSC) was used to measure the denaturation or melting temperature (T(m)) and enthalpy (H(m)) of rhDNase. The effects of denaturants (guanidine HCl and urea) and additives (mainly divalent cations and disaccharides) were investigated at pH 6-7. The T(m) and H(m) of rhDNase in pure water were measured as 67.4 degrees C and 18.0 J/g respectively, values typical of globular proteins. The melting peak disappeared on re-running the sample after cooling to room temperature, indicating that the thermal denaturation was irreversible. The latter was due to the occurrence of aggregation accompanying the unfolding process of rhDNase. Size exclusion chromatography indicated that during heat denaturation, rhDNase formed soluble high molecular weight aggregates with a molecular size >300kD estimated by the void volume. Of particular interest are the divalent ...
Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifi... more Colloidal Probe Nanoscopy (CPN), the study of the nano-scale interactive forces between a specifically prepared colloidal probe and any chosen substrate using the Atomic Force Microscope (AFM), can provide key insights into physical interactions present within colloidal systems. Colloidal systems are widely existent in several applications including, pharmaceuticals, foods, paints, paper, soil and minerals, detergents, printing and much more.1-3 Furthermore, colloids can exist in many states such as emulsions, foams and suspensions. Using colloidal probe nanoscopy one can obtain key information on the adhesive properties, binding energies and even gain insight into the physical stability and coagulation kinetics of the colloids present within. Additionally, colloidal probe nanoscopy can be used with biological cells to aid in drug discovery and formulation development. In this paper we describe a method for conducting colloidal probe nanoscopy, discuss key factors that are important...
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2014
Colloidal probe microscopy (CPM) is a quantitative predictive tool, which can offer insight into ... more Colloidal probe microscopy (CPM) is a quantitative predictive tool, which can offer insight into particle behavior in suspension pressurized metered dose inhalers (pMDIs). Although CPM instantaneous force measurements, which involve immediate retraction of the probe upon sample contact, can provide information on inter-particle attractive forces, they lack the ability to appropriately imitate all critical particle pMDI interactions (e.g., particle re-dispersion after prolonged pMDI storage). In this paper, two novel dwell force techniques - indentation and deflection dwell - were employed to mimic long-term particle interactions present in pMDIs, using particles of various internal structures and a model liquid propellant (2H,3H perfluoropentane) as a model system. Dwell measurements involve particle contact for an extended period of time. In deflection dwell mode the probe is held at a specific position, while in indentation dwell mode the probe is forced into the sample with a con...
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2014
Nucleic acids have the potential to be used as therapies or vaccines for many different types of ... more Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease, but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar lavage fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impactor (NGI), gel retardat...
Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to ... more Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to produce fine powders of recombinant human deoxyribonuclease (rhDNase), lysozyme-lactose and rhDNase- lactose powders from aqueous based solutions.
Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to ... more Purpose. To investigate the feasibility of using the Aerosol Solvent Extraction System (ASES) to generate microparticles of proteins suitable for aerosol delivery from aqueous-based solutions.
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung, 1993
Single photon emission computed tomography (SPECT) has distinct advantages over the conventional ... more Single photon emission computed tomography (SPECT) has distinct advantages over the conventional planar imaging technique in generating more information about radionuclide distribution within the body. The general application of SPECT in lung studies has been extensive, but its specific use in aerosol research is still uncommon. This review focuses on the applications, the advantages and limitations, and the potential of quantification of SPECT in aerosol studies.
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung, 2006
Development of dry powder aerosol delivery system involves powder production, formulation, disper... more Development of dry powder aerosol delivery system involves powder production, formulation, dispersion, delivery, and deposition of the powder aerosol in the airways. Insufficiency of conventional powder production by crystallization and milling has led to development of alternative techniques. Over the last decade, performance of powder formulations has been improved significantly through the use of engineered drug particles and excipient systems which are (i) of low aerodynamic diameters (being porous or of low particle density), and/or (ii) less cohesive and adhesive (via corrugated surfaces, low bulk density, reduced surface energy and particle interaction, hydrophobic additives, and fine carrier particles). Early insights into particle forces and surface energy that help explain the improvement have been provided by analytical techniques such as the atomic force microscopy (AFM) and inverse gas chromatography (IGC). Relative humidity is critical to the performance of dry powder inhaler (DPI) products via capillary force and electrostatic interaction. Electrostatic charge of different particle size fractions of an aerosol can now be measured using a modified electrical low-pressure impactor (ELPI). Compared with powders, much less work has been done on the inhaler devices at the fundamental level. Most recently, computational fluid dynamics has been applied to understand how the inhaler design (such as mouthpiece, grid structure, air inlet) affects powder dispersion. The USP throat is known to under-represent the oropharyngeal deposition of DPI aerosols. Studies using magnetic resonance imaging (MRI) model casts have been undertaken to explain the inter- and intra- subject variation in oropharyngeal deposition. Most of the lung deposition studies performed on commercial products did not allow a thorough understanding of the determinants affecting in vivo lung deposition. A more systematic approach would be necessary to build a useful database on the dependence of lung deposition on the breathing parameters, inhaler design, and powder formulation properties.
... condensation) [145]. Wet milling using grinding media of diameter ≤ 1 mm has been used to pro... more ... condensation) [145]. Wet milling using grinding media of diameter ≤ 1 mm has been used to produce crystalline nanoparticles (NanoCrys-tal®; Elan PharmaceuticalTechnologies), of sizes < 400 nm, suitable for nebulisation. Milling in ...
Nedocromil sodium inhibits the response to exercise-induced asthma (EIA). Mannitol given as a pow... more Nedocromil sodium inhibits the response to exercise-induced asthma (EIA). Mannitol given as a powder by inhalation is an os- motic stimulus that identifies EIA. We studied the acute effect of nedocromil on airway responsiveness to mannitol in 24 asthmatic subjects. After a control day, nedocromil (8 mg) or its placebo was administered randomized, double blind, 10 min before a chal-
Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung, 2002
Pharmaceutical aerosol delivery is undergoing dramatic changes in both inhaler device and formula... more Pharmaceutical aerosol delivery is undergoing dramatic changes in both inhaler device and formulation aspects. There is a rapid move from the traditional propellant-driven metered dose inhalers to the high performance liquid atomizers and dry powder inhalers (DPIs). DPIs involving the dispersion of powders into aerosols by an inhaler device are particularly attractive as dry powders generally have greater chemical stability than liquids used in atomizers. Delivery of therapeutic proteins as dry powder aerosols is of high commerical interest. However, production and formulation of dry powders for inhalation can be difficult and challenging due to the potential physical instability of the powder. Dry powders consisting of micro- or nano-sized particles are inherently adhesive and cohesive, leading to highly variable dose accuracy and poor aerosol performance. Particle engineering via the use of appropriate pharmaceutical excipients and processing parameters can produce particles of optimal morphologies and surface properties which would enhance aerosol generation. Some of the key determinants for successful dispersion of pharmaceutical powders suitable for inhalation are reviewed with an emphasis on the practical significance.
Purpose. We investigated the effect of primary powder polydispersity on the generation of pharmac... more Purpose. We investigated the effect of primary powder polydispersity on the generation of pharmaceutical powder aerosols, using mannitol and bovine serum albu- min (BSA) as the model compounds. Methods. Primary powders with different polydispersity but comparable physical and mass median aerodynamic diameter (MMAD) were obtained from spray drying. The polydispersity, i.e. the width of the particle size distribution, of the
Successful delivery of dry powder aerosols to the lung requires careful consideration of the powd... more Successful delivery of dry powder aerosols to the lung requires careful consideration of the powder production process, formulation and inhaler device. Newer production methods are emerging to prepare powders with desirable characteristics for inhalational administration. The conventional formulation approach of adding coarse lactose carriers to the drug to form binary powder systems to enhance powder flow and dispersion properties has
Purpose. To study the effect of particle size, air flow and inhaler type on the dispersion of spr... more Purpose. To study the effect of particle size, air flow and inhaler type on the dispersion of spray dried mannitol powders into aerosols.
To date, various nanodrug systems have been developed for different routes of administration, whi... more To date, various nanodrug systems have been developed for different routes of administration, which include dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhanced bioavailability of orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), and targeted delivery to specific tissues. Thus, nanodrug systems might lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity. A better understanding of the pharmacokinetic and safety characteristics of nanodrugs and the limitations of each delivery option is necessary for the further development of efficacious nanodrugs with high therapeutic potential and a wide safety margin. This review highlights the recent progress in nanodrug system development, with a focus on the pharmacokinetic advantages and safety challenges.
One of the most common causes of illnesses in humans is from respiratory tract infections caused ... more One of the most common causes of illnesses in humans is from respiratory tract infections caused by bacterial, viral or fungal pathogens. Inhaled anti-infective drugs are crucial for the prophylaxis and treatment of respiratory tract infections. The benefit of anti-infective drug delivery via inhalation is that it affords delivery of sufficient therapeutic dosages directly to the primary site of infection, while minimizing the risks of systemic toxicity or avoiding potential suboptimal pharmacokinetics/pharmacodynamics associated with systemic drug exposure. This review provides an up-to-date treatise of approved and novel developmental inhaled anti-infective agents, with particular attention to effective strategies for their use, pulmonary pharmacokinetic properties and safety.
To study if electrostatic charge initially present in mannitol powder plays a role in the generat... more To study if electrostatic charge initially present in mannitol powder plays a role in the generation of aerosols, mannitol was unipolarly charged to varying magnitudes by tumbling the powder inside containers of different materials. The resulting charge in the powder was consistent with predictions from the triboelectric charging theories, based on the work function values from literature and electron transfer tendencies from measurement of contact angle. The latter generated a parameter, gamma(-)/gamma+, which is a measure of the electron-donating capacity relative to the electron-accepting tendency of material. Lowering the work function value or increasing the gamma(-)/gamma+ ratio of the container material resulted in mannitol being more negatively charged, and vice versa. After charging, the powder was dispersed from an Aerolizer(R), at 30 and 60 L/min, to study the aerosol performance. Irrespective of the charge level, the powder showed similar fine particle fraction, emitted dose and device retention at a given flow rate, indicating that charge induced by different containers during tumbling does not play a significant role in mannitol powder aerosolisation.
Uploads
Papers by Hak-kim Chan