Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Hyunsig Kil

    Hyunsig Kil

    Highly crystallized anatase TiO2 nanoparticles were synthesized at a temperature as low as 120 °C through a glycothermal reaction using amorphous titanium hydrous gel as precursor and 1,4-butanediol and water as solvent. X-ray diffraction... more
    Highly crystallized anatase TiO2 nanoparticles were synthesized at a temperature as low as 120 °C through a glycothermal reaction using amorphous titanium hydrous gel as precursor and 1,4-butanediol and water as solvent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data support that the glycothermal processing method provides a simple low-temperature route for producing highly crystallized anatase TiO2 nanoparticles without pH adjustment. It is demonstrated that the shape and dispersability of TiO2 nanoparticles can be controlled by the reaction conditions, such as the reaction temperature and variation of the volume ratio of 1,4- butanediol/water (B/W). It was observed that TiO2 samples glycothermally prepared at 220 °C and the B/W ratio of 8/0 showed excellent photocatalytic behavior. The high activity is attributed to the high crystallinity and bipyramidal shape of the particles, which have fewer defects and more active {101} surfaces.
    Barium magnesium tantalate Ba(Mg1/3Ta2/3)O3 (BMT) nanopowders were synthesized at a low temperature of 220°C through glycothermal reaction by using Ba(OH)2·8H2O, Mg(NO3)·6H2O, and TaCl5 as precursors and 1,4-butanediol as solvent. It is... more
    Barium magnesium tantalate Ba(Mg1/3Ta2/3)O3 (BMT) nanopowders were synthesized at a low temperature of 220°C through glycothermal reaction by using Ba(OH)2·8H2O, Mg(NO3)·6H2O, and TaCl5 as precursors and 1,4-butanediol as solvent. It is demonstrated that higher synthesis temperatures and co-precipitation of magnesium and tantalum improve the incorporation of magnesium into BMT nanopowders under glycothermal treatment and produce a homogeneous, stoichiometric powder. The glycothermally derived BMT nanopowders are very reactive and provide a high-density sintered body with 97.1% of theoretical density at a low temperature of 1350°C. The average grain size of the sintered ceramics was 1.2±0.2μm and relatively uniform in comparison with the ceramics sintered with powders produced from the conventional method.