An emerging paradigm for the processing of data streams involves human and machine computation wo... more An emerging paradigm for the processing of data streams involves human and machine computation working together, allowing human intelligence to process large-scale data. We apply this approach to the classification of crisis-related messages in microblog streams. We begin by describing the platform AIDR (Artificial Intelligence for Disaster Response), which collects human annotations over time to create and maintain automatic supervised classifiers for social media messages. Next, we study two significant challenges in its design: (1) identifying which elements must be labeled by humans, and (2) determining when to ask for such annotations to be done. The first challenge is selecting the items to be labeled by crowdsourcing workers to maximize the productivity of their work. The second challenge is to schedule the work in order to reliably maintain high classification accuracy over time. We provide and validate answers to these challenges by extensive experimentation on real-world datasets.
An emerging paradigm for the processing of data streams involves human and machine computation wo... more An emerging paradigm for the processing of data streams involves human and machine computation working together, allowing human intelligence to process large-scale data. We apply this approach to the classification of crisis-related messages in microblog streams. We begin by describing the platform AIDR (Artificial Intelligence for Disaster Response), which collects human annotations over time to create and maintain automatic supervised classifiers for social media messages. Next, we study two significant challenges in its design: (1) identifying which elements must be labeled by humans, and (2) determining when to ask for such annotations to be done. The first challenge is selecting the items to be labeled by crowdsourcing workers to maximize the productivity of their work. The second challenge is to schedule the work in order to reliably maintain high classification accuracy over time. We provide and validate answers to these challenges by extensive experimentation on real-world datasets.
Uploads
Papers by Jakob Rogstadius