Although evidence suggests that there are impairments in skilled movements following very large l... more Although evidence suggests that there are impairments in skilled movements following very large lesions of the pyramidal component of the corticospinal tract, the behavioral and electrophysiological effects of partial lesion has not received equal attention. Here, rats with complete lesions or partial lesions (medial, central, or lateral third) of the pyramidal tract at the medullary pyramids were evaluated for their quantitative and qualitative postsurgical performance on a skilled reaching task, following which the topographic representation of their forelimb was mapped with intracortical microstimulation (ICMS). Complete lesions impaired reaching success, impaired the qualitative features of reaching movements, and abolished ICMS evoked movement from the forelimb region of motor cortex. Although partial lesions did not impair reaching success, they did impair qualitative aspects of limb movement including forepaw aiming, supination, and food pellet release. ICMS indicated a reduction in the size of the forelimb area, especially the distal area of the caudal forelimb area (CFA), of the motor map. The behavioral and electrophysiological impairments did not vary with lesion location within the pyramidal tract. The incomplete recovery, as measured both behaviorally and electrophysiologically, demonstrates that plasticity within the corticospinal system is limited even with lesions that permit substantial sparing of pyramidal tract fibers.
Intracortical microstimulation of the frontal cortex evokes movements in the contralateral limbs,... more Intracortical microstimulation of the frontal cortex evokes movements in the contralateral limbs, paws, and digits of placental mammals including the laboratory rat. The topographic representation of movement in the rat consists of a rostral forelimb area (RFA), a caudal forelimb area (CFA), and a hind limb area (HLA). The size of these representations can vary between individual animals and the
While limb motor deficits of Parkinson's disease are well characterized, the effects of stria... more While limb motor deficits of Parkinson's disease are well characterized, the effects of striatal dopamine depletion on the motor cortex is poorly understood. We therefore aimed to 1) examine the effects of striatal dopamine depletion on forelimb function and cortical motor map topography and 2) explore potential relationships between forelimb function and cortical movement representations in an animal model of PD. Twenty-four male Long Evans rats were randomized to control or 6-hydroxydopamine (6-OHDA) groups. Animals in the 6-OHDA group underwent four unilateral 6-OHDA infusions into the striatum to induce striatal dopamine depletion. Four weeks later, animals were tested on a comprehensive battery of behavioral limb motor tasks followed by intracortical microstimulation to derive high-resolution topographic maps of forelimb movement representations. Standard tyrosine hydroxylase (TH) immunohistochemistry was performed and near infrared densitometry analysis utilized to assess ...
Infant rats treated with basic fibroblast growth factor-2 (FGF-2) after postnatal day (P)10 motor... more Infant rats treated with basic fibroblast growth factor-2 (FGF-2) after postnatal day (P)10 motor cortical injury, show functional improvement in adulthood relative to those that do not receive FGF-2. In this study we used a combination of behavioural, immunohistochemical, electrophysiological, electron microscopic and teratological approaches to investigate possible mechanisms by which FGF-2 may influence functional recovery. We show that subcutaneous injections of FGF-2 following bilateral lesions to the motor cortex at P10 in the rat leads to filling of the lesion area with migrating neuroblasts and cycling cells. We assessed the functionality of this tissue in adulthood, and show that cells from the filled region spontaneously fire and form synapses. Behavioural analysis shows enhanced motor performance in the FGF-2-treated lesion rats in comparison to vehicle-treated lesion rats, and this improvement is reversed by removal of the tissue from the previously lesioned area or by blocking cortical regeneration by embryonic treatment with bromodeoxyuridine (BrdU). The results show that FGF-2 stimulates filling of the lesion cavity with cells after neonatal motor cortex lesions, that the new tissue has anatomical and physiological properties similar to control tissue, and that the filled region supports motor behaviour.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 3, 2015
Following unilateral stroke, the contralateral (paretic) body side is often severely impaired, an... more Following unilateral stroke, the contralateral (paretic) body side is often severely impaired, and individuals naturally learn to rely more on the nonparetic body side, which involves learning new skills with it. Such compensatory hyper-reliance on the "good" body side, however, can limit functional improvements of the paretic side. In rats, motor skill training with the nonparetic forelimb (NPT) following a unilateral infarct lessens the efficacy of rehabilitative training, and reduces neuronal activation in perilesion motor cortex. However, the underlying mechanisms remain unclear. In the present study, we investigated how forelimb movement representations and synaptic restructuring in perilesion motor cortex respond to NPT and their relationship with behavioral outcomes. Forelimb representations were diminished as a result of NPT, as revealed with intracortical microstimulation mapping. Using transmission electron microscopy and stereological analyses, we found that den...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 11, 2013
Learning a novel motor skill is associated with well characterized structural and functional plas... more Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral he...
The incidence of stroke in adulthood increases with advancing age, but there is little understand... more The incidence of stroke in adulthood increases with advancing age, but there is little understanding of how poststroke treatment should be tailored by age. The goal of this study was to determine if age and task specificity of rehabilitative training affect behavioral improvement and motor cortical organization after stroke. Young and aged mice were trained to proficiency on the Pasta Matrix Reaching Task prior to lesion induction in primary motor cortex with endothelin-1. After a short recovery period, mice received 9 weeks of rehabilitative training on either the previously learned task (Pasta Matrix Reaching), a different reaching task (Tray Reaching), or no training. To determine the extent of relearning, mice were tested once weekly on the Pasta Matrix Reaching Task. Mice then underwent intracortical microstimulation mapping to resolve the remaining forelimb movement representations in perilesion motor cortex. Although aged mice had significantly larger lesions compared with yo...
Strengthening of synaptic connections has been proposed to underlie information storage in the br... more Strengthening of synaptic connections has been proposed to underlie information storage in the brain, and experience-dependent increases in synapse number have been observed. However, the effect of these new synapses on the specific connectivity, and thus function, of a given brain area remains largely unknown. We report here that motor learning specifically induces the formation of multiple synapses–two post-synaptic contacts at a single pre-synaptic varicosity–in the cerebellum. Rats undergoing motor learning had more multiple ...
Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the s... more Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the side contralateral to the lesion. Although there are anecdotal reports of bilateral deficits after stroke in humans and in experimental animals, little is known of the effects of unilateral lesions on the same side of the body. The objective of the present study was to make a systematic examination of the motor skills of the ipsilateral forelimb after frontal cortex lesions to either the motor cortex by devascularization of the surface blood vessels (pial stroke), or to the lateral cortex by electrocoagulation of the distal branches of the middle cerebral artery (MCA stroke). Plastic processes in the intact hemisphere were documented using Golgi-Cox dendritic analysis and by intracortical microstimulation analysis. Although tests of reflexive responses in forelimb placing identified a contralateral motor impairment following both cortical lesions, quantitative and qualitative measures of skilled reaching identified a severe ipsilateral impairment from which recovery was substantial but incomplete. Golgi-impregnated pyramidal cells in the forelimb area showed an increase in dendritic length and branching. Electrophysiological mapping showed normal size forelimb representations in the lesioned rats relative to control animals. The finding of an enduring ipsilateral impairment in skilled movement is consistent with a large but more anecdotal literature in rats, nonhuman primates and humans, and suggests that plastic changes in the intact hemisphere are related to that hemisphere's contribution to skilled movement.
Although evidence suggests that there are impairments in skilled movements following very large l... more Although evidence suggests that there are impairments in skilled movements following very large lesions of the pyramidal component of the corticospinal tract, the behavioral and electrophysiological effects of partial lesion has not received equal attention. Here, rats with complete lesions or partial lesions (medial, central, or lateral third) of the pyramidal tract at the medullary pyramids were evaluated for their quantitative and qualitative postsurgical performance on a skilled reaching task, following which the topographic representation of their forelimb was mapped with intracortical microstimulation (ICMS). Complete lesions impaired reaching success, impaired the qualitative features of reaching movements, and abolished ICMS evoked movement from the forelimb region of motor cortex. Although partial lesions did not impair reaching success, they did impair qualitative aspects of limb movement including forepaw aiming, supination, and food pellet release. ICMS indicated a reduction in the size of the forelimb area, especially the distal area of the caudal forelimb area (CFA), of the motor map. The behavioral and electrophysiological impairments did not vary with lesion location within the pyramidal tract. The incomplete recovery, as measured both behaviorally and electrophysiologically, demonstrates that plasticity within the corticospinal system is limited even with lesions that permit substantial sparing of pyramidal tract fibers.
Intracortical microstimulation of the frontal cortex evokes movements in the contralateral limbs,... more Intracortical microstimulation of the frontal cortex evokes movements in the contralateral limbs, paws, and digits of placental mammals including the laboratory rat. The topographic representation of movement in the rat consists of a rostral forelimb area (RFA), a caudal forelimb area (CFA), and a hind limb area (HLA). The size of these representations can vary between individual animals and the
While limb motor deficits of Parkinson's disease are well characterized, the effects of stria... more While limb motor deficits of Parkinson's disease are well characterized, the effects of striatal dopamine depletion on the motor cortex is poorly understood. We therefore aimed to 1) examine the effects of striatal dopamine depletion on forelimb function and cortical motor map topography and 2) explore potential relationships between forelimb function and cortical movement representations in an animal model of PD. Twenty-four male Long Evans rats were randomized to control or 6-hydroxydopamine (6-OHDA) groups. Animals in the 6-OHDA group underwent four unilateral 6-OHDA infusions into the striatum to induce striatal dopamine depletion. Four weeks later, animals were tested on a comprehensive battery of behavioral limb motor tasks followed by intracortical microstimulation to derive high-resolution topographic maps of forelimb movement representations. Standard tyrosine hydroxylase (TH) immunohistochemistry was performed and near infrared densitometry analysis utilized to assess ...
Infant rats treated with basic fibroblast growth factor-2 (FGF-2) after postnatal day (P)10 motor... more Infant rats treated with basic fibroblast growth factor-2 (FGF-2) after postnatal day (P)10 motor cortical injury, show functional improvement in adulthood relative to those that do not receive FGF-2. In this study we used a combination of behavioural, immunohistochemical, electrophysiological, electron microscopic and teratological approaches to investigate possible mechanisms by which FGF-2 may influence functional recovery. We show that subcutaneous injections of FGF-2 following bilateral lesions to the motor cortex at P10 in the rat leads to filling of the lesion area with migrating neuroblasts and cycling cells. We assessed the functionality of this tissue in adulthood, and show that cells from the filled region spontaneously fire and form synapses. Behavioural analysis shows enhanced motor performance in the FGF-2-treated lesion rats in comparison to vehicle-treated lesion rats, and this improvement is reversed by removal of the tissue from the previously lesioned area or by blocking cortical regeneration by embryonic treatment with bromodeoxyuridine (BrdU). The results show that FGF-2 stimulates filling of the lesion cavity with cells after neonatal motor cortex lesions, that the new tissue has anatomical and physiological properties similar to control tissue, and that the filled region supports motor behaviour.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 3, 2015
Following unilateral stroke, the contralateral (paretic) body side is often severely impaired, an... more Following unilateral stroke, the contralateral (paretic) body side is often severely impaired, and individuals naturally learn to rely more on the nonparetic body side, which involves learning new skills with it. Such compensatory hyper-reliance on the "good" body side, however, can limit functional improvements of the paretic side. In rats, motor skill training with the nonparetic forelimb (NPT) following a unilateral infarct lessens the efficacy of rehabilitative training, and reduces neuronal activation in perilesion motor cortex. However, the underlying mechanisms remain unclear. In the present study, we investigated how forelimb movement representations and synaptic restructuring in perilesion motor cortex respond to NPT and their relationship with behavioral outcomes. Forelimb representations were diminished as a result of NPT, as revealed with intracortical microstimulation mapping. Using transmission electron microscopy and stereological analyses, we found that den...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 11, 2013
Learning a novel motor skill is associated with well characterized structural and functional plas... more Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral he...
The incidence of stroke in adulthood increases with advancing age, but there is little understand... more The incidence of stroke in adulthood increases with advancing age, but there is little understanding of how poststroke treatment should be tailored by age. The goal of this study was to determine if age and task specificity of rehabilitative training affect behavioral improvement and motor cortical organization after stroke. Young and aged mice were trained to proficiency on the Pasta Matrix Reaching Task prior to lesion induction in primary motor cortex with endothelin-1. After a short recovery period, mice received 9 weeks of rehabilitative training on either the previously learned task (Pasta Matrix Reaching), a different reaching task (Tray Reaching), or no training. To determine the extent of relearning, mice were tested once weekly on the Pasta Matrix Reaching Task. Mice then underwent intracortical microstimulation mapping to resolve the remaining forelimb movement representations in perilesion motor cortex. Although aged mice had significantly larger lesions compared with yo...
Strengthening of synaptic connections has been proposed to underlie information storage in the br... more Strengthening of synaptic connections has been proposed to underlie information storage in the brain, and experience-dependent increases in synapse number have been observed. However, the effect of these new synapses on the specific connectivity, and thus function, of a given brain area remains largely unknown. We report here that motor learning specifically induces the formation of multiple synapses–two post-synaptic contacts at a single pre-synaptic varicosity–in the cerebellum. Rats undergoing motor learning had more multiple ...
Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the s... more Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the side contralateral to the lesion. Although there are anecdotal reports of bilateral deficits after stroke in humans and in experimental animals, little is known of the effects of unilateral lesions on the same side of the body. The objective of the present study was to make a systematic examination of the motor skills of the ipsilateral forelimb after frontal cortex lesions to either the motor cortex by devascularization of the surface blood vessels (pial stroke), or to the lateral cortex by electrocoagulation of the distal branches of the middle cerebral artery (MCA stroke). Plastic processes in the intact hemisphere were documented using Golgi-Cox dendritic analysis and by intracortical microstimulation analysis. Although tests of reflexive responses in forelimb placing identified a contralateral motor impairment following both cortical lesions, quantitative and qualitative measures of skilled reaching identified a severe ipsilateral impairment from which recovery was substantial but incomplete. Golgi-impregnated pyramidal cells in the forelimb area showed an increase in dendritic length and branching. Electrophysiological mapping showed normal size forelimb representations in the lesioned rats relative to control animals. The finding of an enduring ipsilateral impairment in skilled movement is consistent with a large but more anecdotal literature in rats, nonhuman primates and humans, and suggests that plastic changes in the intact hemisphere are related to that hemisphere's contribution to skilled movement.
Uploads
Papers by Jeffrey Kleim