Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
We have applied cell-attached capacitance measurements to investigate whether synaptic-like micro... more We have applied cell-attached capacitance measurements to investigate whether synaptic-like microvesicles (SLMVs) undergo regulated exocytosis in insulinoma and primary pancreatic beta-cells. SLMV and large dense-core vesicle (LDCV) exocytosis was increased 1.6- and 2.4-fold upon stimulation with 10 mmol/l glucose in INS-1 cells. Exocytosis of both types of vesicles was coupled to Ca(2+) entry through l-type channels. Thirty percent of SLMV exocytosis in INS-1 and rat beta-cells was associated with transient capacitance increases consistent with kiss-and-run. Elevation of intracellular cAMP (5 micromol/l forskolin) increased SLMV exocytosis 1.6-fold and lengthened the duration of kiss-and-run events in rat beta-cells. Experiments using isolated inside-out patches of INS-1 cells revealed that the readily releasable pool (RRP) of SLMVs preferentially undergoes kiss-and-run exocytosis (67%), is proportionally larger than the LDCV RRP, and is depleted more quickly upon Ca(2+) stimulation. We conclude that SLMVs undergo glucose-regulated exocytosis and are capable of high turnover. Following kiss-and-run exocytosis, the SLMV RRP may be reloaded with gamma-aminobutyric acid and undergo several cycles of exo- and endocytosis. Our observations support a role for beta-cell SLMVs in a synaptic-like function of rapid intra-islet signaling.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
The Journal of Clinical Endocrinology Metabolism, Jul 2, 2013
The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whethe... more The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whether this is explained by a corresponding variation in the incretin hormones is not known. Our objective was to assess islet and incretin hormones after meal ingestion in the morning vs. afternoon. Ingestion at 0800 and 1700 h of a standardized meal (524 kcal) in healthy lean males (n = 12) at a University Clinical Research Unit. We assessed early (30-min) area under the curve (AUC30) of plasma levels of insulin and intact (i) and total (t) glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) after meal ingestion and made an estimation of beta-cell function by model analysis of glucose and C-peptide. Peak glucose was lower in the morning than in the afternoon (6.1 +/- 0.2 vs. 7.4 +/- 0.3 mmol/liter, P = 0.001). AUC30(insulin) (4.9 +/- 0.6 vs. 2.8 +/- 0.4 nmol/liter . 30 min; P = 0.012), AUC30(tGLP-1) (300 +/- 40 vs. 160 +/- 30 pmol/liter . 30 min, P = 0.002), AUC30(iGIP) (0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/liter . 30 min, P = 0.002), and AUC30(tGIP) (1.1 +/- 0.1 vs. 0.6 +/- 0.1 nmol/liter . min, P = 0.007) were all higher in the morning. AUC30(iGLP-1) (r = 0.68; P = 0.021) and AUC30(iGIP) (r = 0.78; P = 0.001) both correlated to AUC30(insulin). Model analysis of beta-cell function showed a higher first-hour potentiation factor in the morning (P = 0.009). This correlated negatively with the 60-min glucose level (r = -0.63; P < 0.001). The early release of GLP-1 and GIP are more pronounced in the morning than in the afternoon. This may contribute to the more rapid early insulin response, more pronounced potentiation of beta-cell function, and lower glucose after the morning meal.
The Journal of Clinical Endocrinology and Metabolism, 2009
The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whethe... more The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whether this is explained by a corresponding variation in the incretin hormones is not known. Our objective was to assess islet and incretin hormones after meal ingestion in the morning vs. afternoon. Ingestion at 0800 and 1700 h of a standardized meal (524 kcal) in healthy lean males (n = 12) at a University Clinical Research Unit. We assessed early (30-min) area under the curve (AUC30) of plasma levels of insulin and intact (i) and total (t) glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) after meal ingestion and made an estimation of beta-cell function by model analysis of glucose and C-peptide. Peak glucose was lower in the morning than in the afternoon (6.1 +/- 0.2 vs. 7.4 +/- 0.3 mmol/liter, P = 0.001). AUC30(insulin) (4.9 +/- 0.6 vs. 2.8 +/- 0.4 nmol/liter . 30 min; P = 0.012), AUC30(tGLP-1) (300 +/- 40 vs. 160 +/- 30 pmol/liter . 30 min, P = 0.002), AUC30(iGIP) (0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/liter . 30 min, P = 0.002), and AUC30(tGIP) (1.1 +/- 0.1 vs. 0.6 +/- 0.1 nmol/liter . min, P = 0.007) were all higher in the morning. AUC30(iGLP-1) (r = 0.68; P = 0.021) and AUC30(iGIP) (r = 0.78; P = 0.001) both correlated to AUC30(insulin). Model analysis of beta-cell function showed a higher first-hour potentiation factor in the morning (P = 0.009). This correlated negatively with the 60-min glucose level (r = -0.63; P < 0.001). The early release of GLP-1 and GIP are more pronounced in the morning than in the afternoon. This may contribute to the more rapid early insulin response, more pronounced potentiation of beta-cell function, and lower glucose after the morning meal.
cAMP signaling is important for the regulation of insulin secretion in pancreatic β-cells. The le... more cAMP signaling is important for the regulation of insulin secretion in pancreatic β-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the β-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K+ for 5 min, was significantly reduced (∼ 25% compared to controls). In contrast, in islets from PDE3B−/− mice the response to high K+ was increased. Further, stimulation of isolated β-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca2+-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type β-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca2+, plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in β-cells.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
We have applied cell-attached capacitance measurements to investigate whether synaptic-like micro... more We have applied cell-attached capacitance measurements to investigate whether synaptic-like microvesicles (SLMVs) undergo regulated exocytosis in insulinoma and primary pancreatic beta-cells. SLMV and large dense-core vesicle (LDCV) exocytosis was increased 1.6- and 2.4-fold upon stimulation with 10 mmol/l glucose in INS-1 cells. Exocytosis of both types of vesicles was coupled to Ca(2+) entry through l-type channels. Thirty percent of SLMV exocytosis in INS-1 and rat beta-cells was associated with transient capacitance increases consistent with kiss-and-run. Elevation of intracellular cAMP (5 micromol/l forskolin) increased SLMV exocytosis 1.6-fold and lengthened the duration of kiss-and-run events in rat beta-cells. Experiments using isolated inside-out patches of INS-1 cells revealed that the readily releasable pool (RRP) of SLMVs preferentially undergoes kiss-and-run exocytosis (67%), is proportionally larger than the LDCV RRP, and is depleted more quickly upon Ca(2+) stimulation. We conclude that SLMVs undergo glucose-regulated exocytosis and are capable of high turnover. Following kiss-and-run exocytosis, the SLMV RRP may be reloaded with gamma-aminobutyric acid and undergo several cycles of exo- and endocytosis. Our observations support a role for beta-cell SLMVs in a synaptic-like function of rapid intra-islet signaling.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
The Journal of Clinical Endocrinology Metabolism, Jul 2, 2013
The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whethe... more The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whether this is explained by a corresponding variation in the incretin hormones is not known. Our objective was to assess islet and incretin hormones after meal ingestion in the morning vs. afternoon. Ingestion at 0800 and 1700 h of a standardized meal (524 kcal) in healthy lean males (n = 12) at a University Clinical Research Unit. We assessed early (30-min) area under the curve (AUC30) of plasma levels of insulin and intact (i) and total (t) glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) after meal ingestion and made an estimation of beta-cell function by model analysis of glucose and C-peptide. Peak glucose was lower in the morning than in the afternoon (6.1 +/- 0.2 vs. 7.4 +/- 0.3 mmol/liter, P = 0.001). AUC30(insulin) (4.9 +/- 0.6 vs. 2.8 +/- 0.4 nmol/liter . 30 min; P = 0.012), AUC30(tGLP-1) (300 +/- 40 vs. 160 +/- 30 pmol/liter . 30 min, P = 0.002), AUC30(iGIP) (0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/liter . 30 min, P = 0.002), and AUC30(tGIP) (1.1 +/- 0.1 vs. 0.6 +/- 0.1 nmol/liter . min, P = 0.007) were all higher in the morning. AUC30(iGLP-1) (r = 0.68; P = 0.021) and AUC30(iGIP) (r = 0.78; P = 0.001) both correlated to AUC30(insulin). Model analysis of beta-cell function showed a higher first-hour potentiation factor in the morning (P = 0.009). This correlated negatively with the 60-min glucose level (r = -0.63; P < 0.001). The early release of GLP-1 and GIP are more pronounced in the morning than in the afternoon. This may contribute to the more rapid early insulin response, more pronounced potentiation of beta-cell function, and lower glucose after the morning meal.
The Journal of Clinical Endocrinology and Metabolism, 2009
The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whethe... more The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whether this is explained by a corresponding variation in the incretin hormones is not known. Our objective was to assess islet and incretin hormones after meal ingestion in the morning vs. afternoon. Ingestion at 0800 and 1700 h of a standardized meal (524 kcal) in healthy lean males (n = 12) at a University Clinical Research Unit. We assessed early (30-min) area under the curve (AUC30) of plasma levels of insulin and intact (i) and total (t) glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) after meal ingestion and made an estimation of beta-cell function by model analysis of glucose and C-peptide. Peak glucose was lower in the morning than in the afternoon (6.1 +/- 0.2 vs. 7.4 +/- 0.3 mmol/liter, P = 0.001). AUC30(insulin) (4.9 +/- 0.6 vs. 2.8 +/- 0.4 nmol/liter . 30 min; P = 0.012), AUC30(tGLP-1) (300 +/- 40 vs. 160 +/- 30 pmol/liter . 30 min, P = 0.002), AUC30(iGIP) (0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/liter . 30 min, P = 0.002), and AUC30(tGIP) (1.1 +/- 0.1 vs. 0.6 +/- 0.1 nmol/liter . min, P = 0.007) were all higher in the morning. AUC30(iGLP-1) (r = 0.68; P = 0.021) and AUC30(iGIP) (r = 0.78; P = 0.001) both correlated to AUC30(insulin). Model analysis of beta-cell function showed a higher first-hour potentiation factor in the morning (P = 0.009). This correlated negatively with the 60-min glucose level (r = -0.63; P < 0.001). The early release of GLP-1 and GIP are more pronounced in the morning than in the afternoon. This may contribute to the more rapid early insulin response, more pronounced potentiation of beta-cell function, and lower glucose after the morning meal.
cAMP signaling is important for the regulation of insulin secretion in pancreatic β-cells. The le... more cAMP signaling is important for the regulation of insulin secretion in pancreatic β-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the β-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K+ for 5 min, was significantly reduced (∼ 25% compared to controls). In contrast, in islets from PDE3B−/− mice the response to high K+ was increased. Further, stimulation of isolated β-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca2+-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type β-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca2+, plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in β-cells.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring b... more Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.
Uploads
Papers by Jenny Vikman