Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Joana Figueiredo

    Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease... more
    Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor-prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell-matrix interactions could play an important role during this process. Thus, we focused on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis, nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss, and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signaling regulators as molecular targets to impair gastric cancer progression.
    Nonsyndromic orofacial cleft (NSOFC) is a complex disease of still unclear genetic etiology. To investigate the contribution of rare epithelial cadherin (CDH1) gene variants to NSOFC, we target sequenced 221 probands. Candidate variants... more
    Nonsyndromic orofacial cleft (NSOFC) is a complex disease of still unclear genetic etiology. To investigate the contribution of rare epithelial cadherin (CDH1) gene variants to NSOFC, we target sequenced 221 probands. Candidate variants were evaluated via in vitro, in silico, or segregation analyses. Three probably pathogenic variants (c.760G>A [p.Asp254Asn], c.1023T>G [p.Tyr341*] and c.2351G>A [p.Arg784His]) segregated according to autosomal dominant inheritance in four nonsyndromic cleft lip/palate (NSCL/P) families (Lod score: 5.8 at θ = 0; 47% penetrance). A fourth possibly pathogenic variant (c.387+5G>A) was also found, but further functional analyses are needed (overall prevalence of CDH1 candidate variants: 2%; 15.4% among familial cases). CDH1 mutational burden was higher among probands from familial cases when compared to that of controls (P = 0.002). We concluded that CDH1 contributes to NSCL/P with mainly rare, moderately penetrant variants, and CDH1 haploinsufficiency is the likely etiological mechanism. This article is protected by copyright. All rights reserved.
    Familial gastric cancer comprises at least three major syndromes: hereditary diffuse gastric cancer, gastric adenocarcinoma and proximal polyposis of the stomach, and familial intestinal gastric cancer. The risk of development of gastric... more
    Familial gastric cancer comprises at least three major syndromes: hereditary diffuse gastric cancer, gastric adenocarcinoma and proximal polyposis of the stomach, and familial intestinal gastric cancer. The risk of development of gastric cancer is high in families affected b-y these syndromes, but only hereditary diffuse gastric cancer is genetically explained (caused by germline alterations of CDH1, which encodes E-cadherin). Gastric cancer is also associated with a range of several cancer-associated syndromes with known genetic causes, such as Lynch, Li-Fraumeni, Peutz-Jeghers, hereditary breast-ovarian cancer syndromes, familial adenomatous polyposis, and juvenile polyposis. We present contemporary knowledge on the genetics, pathogenesis, and clinical features of familial gastric cancer, and discuss research and technological developments, which together are expected to open avenues for new genetic testing approaches and novel therapeutic strategies.
    The only gastric cancer (GC) syndrome with a proven inherited defect is designated as hereditary diffuse gastric cancer (HDGC) and is caused by germline E-cadherin/CDH1 alterations. Other E-cadherin-associated hereditary disorders have... more
    The only gastric cancer (GC) syndrome with a proven inherited defect is designated as hereditary diffuse gastric cancer (HDGC) and is caused by germline E-cadherin/CDH1 alterations. Other E-cadherin-associated hereditary disorders have been identified, encompassing HDGC families with or without cleft-lip/palate involvement, isolated early-onset diffuse GCs, and lobular breast cancer families without GC. To date, 141 probands harboring more than 100 different germline CDH1 alterations, mainly point mutations and large deletions, have been described in these different settings. A third of all HDGC families described so far carry recurrent CDH1 alterations. Full screening of CDH1 is recommended in patients fulfilling the HDGC criteria and total prophylactic gastrectomy is the only reliable intervention for carriers of pathogenic alterations. In this chapter, we discuss CDH1-associated syndromes, frequency and type of CDH1 germline alterations, clinical criteria, and guidelines for genetic counseling, molecular pathology, and available animal/cell line models of the disease.
    c-KIT is a tyrosine kinase receptor found to be overexpressed in several tumours, namely, GISTs, breast, lung, prostate, ovarian and colorectal carcinomas (CRC). We aimed at determining the frequency of c-KIT expression and mutations in a... more
    c-KIT is a tyrosine kinase receptor found to be overexpressed in several tumours, namely, GISTs, breast, lung, prostate, ovarian and colorectal carcinomas (CRC). We aimed at determining the frequency of c-KIT expression and mutations in a series of 109 CRC cases (73 primary tumours and 36 lymph node metastases) characterised for KRAS and BRAF mutations. We also aimed at analysing the cellular effects of STI571/Gleevec in CRC-derived cell lines displaying c-KIT expression and KRAS or BRAF mutations. By immunohistochemistry, we found c-KIT overexpression in 15% (11/73) of primary tumours and in 14% (5/36) of metastasis; however, cases showing overexpression did not show c-kit mutations in hotspot regions. The majority (64%) of primary tumours with c-KIT overexpression had mutations at KRAS-BRAF genes. The same was true for 60% of the metastases. We treated CRC cell lines with STI571/Gleevec and verified that it inhibits proliferation and induces apoptosis in all cell lines. In conclusion, overexpression of c-KIT is observed in a subset of primary and CRC metastases in the absence of c-kit mutations. STI571/Gleevec increases apoptosis in CRC cell lines independently of its genetic profile, suggesting that STI571/Gleevec is likely to be an alternative drug for the clinical trials of CRC.
    It has long been recognized that E-cadherin dysfunction is a major cause of epithelial cell invasion. However, very little is known about the post-transcriptional modifications of E-cadherin and its role in E-cadherin mediated tumor... more
    It has long been recognized that E-cadherin dysfunction is a major cause of epithelial cell invasion. However, very little is known about the post-transcriptional modifications of E-cadherin and its role in E-cadherin mediated tumor progression. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, and has been pointed as a metastasis suppressor. N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of beta1,6 GlcNAc branching of N-glycans, and has been associated to increase metastasis. The regulatory mechanism between E-cadherin expression and the remodeling of its oligosaccharides structures by GnT-III and GnT-V were explored in this study. We have demonstrated that wild-type E-cadherin regulates MGAT3 gene transcription resulting in increased GnT-III expression. We also showed that GnT-III and GnT-V competitively modified E-cadherin N-glycans. The GnT-III knockdown cells revealed a membrane de-localization of E-cadherin leading to its cytoplasmic accumulation. Further, the GnT-III knockdown cells also caused modifications of E-cadherin N-glycans catalyzed by GnT-III and GnT-V. Altogether our results have clarified the existence of a bidirectional crosstalk between E-cadherin and GnT-III/GnT-V that was, for the first time, reproduced in an in vivo model. This study opens new insights into the post-transcriptional modifications of E-cadherin in its biological function, in a tumor context.
    E-cadherin has a determinant role in tumour progression, acting as an invasion and metastasis suppressor. Germline mutations of E-cadherin gene (CDH1) occur in 30% of families with Hereditary Diffuse Gastric Cancer (HDGC); of these 23%... more
    E-cadherin has a determinant role in tumour progression, acting as an invasion and metastasis suppressor. Germline mutations of E-cadherin gene (CDH1) occur in 30% of families with Hereditary Diffuse Gastric Cancer (HDGC); of these 23% are missense mutations. The CDH1 missense mutations described to date span the entire gene and some lead to significant functional consequences. In this study, we explored the hypothesis that mutations affecting different E-cadherin protein domains have distinct effects on cell motility. To accomplish our objective we characterized the effect of eleven HDGC CDH1 germline missense mutations (T118R, L214P, G239R, A298T, T340A, P373L, R749W, E757K, E781D, P799R and V832M) on cell motility. Further, we studied their effect on the activation of signalling pathways known to be relevant for cell motility such as the EGFR, Src kinase and MAPKs. CDH1 mutations localized on the extracellular and juxtamembrane domains, both affecting the integrity of the extracellular domain, led to increased cell motility accompanied by increased EGFR activation. Moreover, we observed that cells expressing extracellular mutants exhibit increased activation of Src kinase and p38 MAPK. Our results allowed the identification of the E-cadherin domains pivotal for cell motility, further demonstrated a genotype-phenotype correlation, and defined a subset of HDGC cases which may benefit from EGFR inhibitors.
    In hereditary diffuse gastric cancer (HDGC), CDH1 germline gene alterations are causative events in 30% of the cases. In 20% of HDGC families, CDH1 germline mutations are of the missense type and the mutation carriers constitute a problem... more
    In hereditary diffuse gastric cancer (HDGC), CDH1 germline gene alterations are causative events in 30% of the cases. In 20% of HDGC families, CDH1 germline mutations are of the missense type and the mutation carriers constitute a problem in terms of genetic counseling and surveillance. To access the pathogenic relevance of missense mutations, we have previously developed an in vitro method to functionally characterize them. Pathogenic E-cadherin missense mutants fail to aggregate and become more invasive, in comparison with cells expressing the wild-type (WT) protein. Herein, our aim was to develop a complementary method to unravel the pathogenic significance of E-cadherin missense mutations. We used cells stably expressing WT E-cadherin and seven HDGC-associated mutations (five intracellular and two extracellular) and studied by proximity ligation assays (PLA) how these mutants bind to fundamental regulators of E-cadherin function and trafficking. We focused our attention on the interaction with: p120, β-catenin, PIPKIγ and Hakai. We showed that cytoplasmic E-cadherin mutations affect the interaction of one or more binding partners, compromising the E-cadherin stability at the plasma membrane and likely affecting the adhesion complex competence. In the present work, we demonstrated that the study of the interplay between E-cadherin and its binding partners, using PLA, is an easy, rapid, quantitative and highly reproducible technique that can be applied in routine labs to verify the pathogenicity of E-cadherin missense mutants for HDGC diagnosis, especially those located in the intracellular domain of the protein.
    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology... more
    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a ...