Ventriculomegaly (expansion of the brain's fluid-filled ventricles), a condition commonly fou... more Ventriculomegaly (expansion of the brain's fluid-filled ventricles), a condition commonly found in the aging brain, results in areas of gliosis where the ependymal cells are replaced with dense astrocytic patches. Loss of ependymal cells would compromise trans-ependymal bulk flow mechanisms required for clearance of proteins and metabolites from the brain parenchyma. However, little is known about the interplay between age-related ventricle expansion, the decline in ependymal integrity, altered periventricular fluid homeostasis, abnormal protein accumulation and cognitive impairment. In collaboration with the Baltimore Longitudinal Study of Aging (BLSA) and Alzheimer's Disease Neuroimaging Initiative (ADNI), we analyzed longitudinal structural magnetic resonance imaging (MRI) and subject-matched fluid-attenuated inversion recovery (FLAIR) MRI and periventricular biospecimens to map spatiotemporally the progression of ventricle expansion and associated periventricular edema a...
The transcription factor Pitx3 is expressed exclusively by mesodiencephalic dopaminergic neurons;... more The transcription factor Pitx3 is expressed exclusively by mesodiencephalic dopaminergic neurons; however, ablation of Pitx3 results in selective degeneration of primarily dopaminergic neurons of the substantia nigra pars compacta, the neuronal population that is most vulnerable in Parkinson's disease. Although the exact molecular mechanisms of the action of Pitx3 are unclear, roles in both terminal maturation and/or survival of substantia nigra dopaminergic neurons have been suggested. To investigate the connection between Pitx3 and selective neurodegeneration, we generated embryonic stem cells from a Pitx3-deficient mouse (aphakia) for in-vitro differentiation to dopaminergic neurons. This 'loss of function'in-vitro system allowed us to examine characteristic features in dopaminergic neuron development and to assess the role that Pitx3 plays in the differentiation/maturation process. We found that aphakia embryonic stem cells generated 50% fewer tyrosine hydroxylase-positive/microtubule-associated protein (Map)2-positive mature neurons compared with control cultures. The expression of dopamine transport regulators and vesicle release proteins was reduced and dopamine release was unregulated in the Pitx3-deficient tyrosine hydroxylase-positive neurons generated. Treatment of aphakia embryonic stem cell cultures with retinoic acid resulted in a significant increase in mesodiencephalic tyrosine hydroxylase-positive neurons, providing further support for the role of Pitx3 in dopaminergic neuron specification through the retinoic acid pathway. Our study, using Pitx3-deficient embryonic stem cells in an in-vitro differentiation culture system, allowed us to assess the role of Pitx3 in the specification and final maturation of dopaminergic neurons.
Nerve growth factor and other neurotrophins signal to neurons through the Trk family of receptor ... more Nerve growth factor and other neurotrophins signal to neurons through the Trk family of receptor tyrosine kinases. TrkB is relatively promiscuous in vitro, acting as a receptor for brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT4) and, to a lesser extent, NT3 (refs 3-5). Mice lacking TrkB show a more severe phenotype than mice lacking BDNF, suggesting that TrkB may act as a receptor for additional ligands in vivo. To explore this possibility, we generated mice lacking NT4 or BDNF as well as mice lacking both neurotrophins. Unlike mice lacking other Trks or neurotrophins, NT4-deficient mice are long-lived and show no obvious neurological defects. Analysis of mutant phenotypes revealed distinct neuronal populations with different neurotrophin requirements. Thus vestibular and trigeminal sensory neurons require BDNF but not NT4, whereas nodose-petrosal sensory neurons require both BDNF and NT4. Motor neurons, whose numbers are drastically reduced in mice lacking TrkB, are not affected even in mice lacking both BDNF and NT4. These results suggest that another ligand, perhaps NT3, does indeed act on TrkB in vivo.
Http Dx Doi Org 10 3109 10425179209039695, Jul 11, 2009
The respective amino acid sequences of mature brain-derived neurotrophic factor (BDNF) and of mat... more The respective amino acid sequences of mature brain-derived neurotrophic factor (BDNF) and of mature neurotrophin-3 (NT-3) are identical among mammals, making these among the structurally conserved factors known. Here we show that only a single conservative amino acid substitution distinguishes the chicken mature NT-3 protein from its mammalian counterpart. Chicken mature BDNF shows slightly more variation, differing from mammalian BDNF at several positions. We also note the presence of amino acid sequence motifs in the precursor protein sequences of chicken BDNF and NT-3 that are universally conserved among all known mammalian neurotrophin precursors and have been demonstrated to play a crucial role in promoting correct processing of the pro-proteins.
Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic ... more Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic mutations. Currently, germline-competent ES cell lines are available from only a limited number of mouse strains, and inappropriate ES cell/host blastocyst combinations often restrict the efficient production of gene-targeted mice. Here, we describe the derivation of C57BL/6J (B6) ES lines and compare the effectiveness of two host blastocyst donors, FVB/NJ (FVB) and the coisogenic strain C57BL/6-Tyr(c)-2J (c2J), for the production of germline chimeras. We found that when B6 ES cells were injected into c2J host blastocysts, a high rate of coat-color chimerism was detected, and germline transmission could be obtained with few blastocyst injections. In all but one case, highly chimeric mice transmitted to 100% of their offspring. The injection of B6 ES cells into FVB blastocysts produced some chimeric mice. However; the proportion of coat-color chimerism was low, with many more blastocyst injections required to generate chimeras capable of germline transmission. Our data support the use of the coisogenic albino host strain, c2J, for the generation of germline-competent chimeric mice when using B6 ES cells.
The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of t... more The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of the adult mammalian brain, contains an extensive network of neuroblasts migrating rostrally to the olfactory bulb. Little is known about the endogenous proliferation signals for SVZ neural stem cells or guidance cues along the migration pathway. Here we show that the receptor tyrosine kinases EphB1-3 and EphA4 and their transmembrane ligands, ephrins-B2/3, are expressed by cells of the SVZ. Electron microscopy revealed ephrin-B ligands associated with SVZ astrocytes, which function as stem cells in this germinal zone. A three-day infusion of the ectodomain of either EphB2 or ephrin-B2 into the lateral ventricle disrupted migration of neuroblasts and increased cell proliferation. These results suggest that Eph/ephrin signaling is involved in the migration of neuroblasts in the adult SVZ and in either direct or indirect regulation of cell proliferation.
Ventriculomegaly (expansion of the brain's fluid-filled ventricles), a condition commonly fou... more Ventriculomegaly (expansion of the brain's fluid-filled ventricles), a condition commonly found in the aging brain, results in areas of gliosis where the ependymal cells are replaced with dense astrocytic patches. Loss of ependymal cells would compromise trans-ependymal bulk flow mechanisms required for clearance of proteins and metabolites from the brain parenchyma. However, little is known about the interplay between age-related ventricle expansion, the decline in ependymal integrity, altered periventricular fluid homeostasis, abnormal protein accumulation and cognitive impairment. In collaboration with the Baltimore Longitudinal Study of Aging (BLSA) and Alzheimer's Disease Neuroimaging Initiative (ADNI), we analyzed longitudinal structural magnetic resonance imaging (MRI) and subject-matched fluid-attenuated inversion recovery (FLAIR) MRI and periventricular biospecimens to map spatiotemporally the progression of ventricle expansion and associated periventricular edema a...
The transcription factor Pitx3 is expressed exclusively by mesodiencephalic dopaminergic neurons;... more The transcription factor Pitx3 is expressed exclusively by mesodiencephalic dopaminergic neurons; however, ablation of Pitx3 results in selective degeneration of primarily dopaminergic neurons of the substantia nigra pars compacta, the neuronal population that is most vulnerable in Parkinson's disease. Although the exact molecular mechanisms of the action of Pitx3 are unclear, roles in both terminal maturation and/or survival of substantia nigra dopaminergic neurons have been suggested. To investigate the connection between Pitx3 and selective neurodegeneration, we generated embryonic stem cells from a Pitx3-deficient mouse (aphakia) for in-vitro differentiation to dopaminergic neurons. This 'loss of function'in-vitro system allowed us to examine characteristic features in dopaminergic neuron development and to assess the role that Pitx3 plays in the differentiation/maturation process. We found that aphakia embryonic stem cells generated 50% fewer tyrosine hydroxylase-positive/microtubule-associated protein (Map)2-positive mature neurons compared with control cultures. The expression of dopamine transport regulators and vesicle release proteins was reduced and dopamine release was unregulated in the Pitx3-deficient tyrosine hydroxylase-positive neurons generated. Treatment of aphakia embryonic stem cell cultures with retinoic acid resulted in a significant increase in mesodiencephalic tyrosine hydroxylase-positive neurons, providing further support for the role of Pitx3 in dopaminergic neuron specification through the retinoic acid pathway. Our study, using Pitx3-deficient embryonic stem cells in an in-vitro differentiation culture system, allowed us to assess the role of Pitx3 in the specification and final maturation of dopaminergic neurons.
Nerve growth factor and other neurotrophins signal to neurons through the Trk family of receptor ... more Nerve growth factor and other neurotrophins signal to neurons through the Trk family of receptor tyrosine kinases. TrkB is relatively promiscuous in vitro, acting as a receptor for brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT4) and, to a lesser extent, NT3 (refs 3-5). Mice lacking TrkB show a more severe phenotype than mice lacking BDNF, suggesting that TrkB may act as a receptor for additional ligands in vivo. To explore this possibility, we generated mice lacking NT4 or BDNF as well as mice lacking both neurotrophins. Unlike mice lacking other Trks or neurotrophins, NT4-deficient mice are long-lived and show no obvious neurological defects. Analysis of mutant phenotypes revealed distinct neuronal populations with different neurotrophin requirements. Thus vestibular and trigeminal sensory neurons require BDNF but not NT4, whereas nodose-petrosal sensory neurons require both BDNF and NT4. Motor neurons, whose numbers are drastically reduced in mice lacking TrkB, are not affected even in mice lacking both BDNF and NT4. These results suggest that another ligand, perhaps NT3, does indeed act on TrkB in vivo.
Http Dx Doi Org 10 3109 10425179209039695, Jul 11, 2009
The respective amino acid sequences of mature brain-derived neurotrophic factor (BDNF) and of mat... more The respective amino acid sequences of mature brain-derived neurotrophic factor (BDNF) and of mature neurotrophin-3 (NT-3) are identical among mammals, making these among the structurally conserved factors known. Here we show that only a single conservative amino acid substitution distinguishes the chicken mature NT-3 protein from its mammalian counterpart. Chicken mature BDNF shows slightly more variation, differing from mammalian BDNF at several positions. We also note the presence of amino acid sequence motifs in the precursor protein sequences of chicken BDNF and NT-3 that are universally conserved among all known mammalian neurotrophin precursors and have been demonstrated to play a crucial role in promoting correct processing of the pro-proteins.
Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic ... more Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic mutations. Currently, germline-competent ES cell lines are available from only a limited number of mouse strains, and inappropriate ES cell/host blastocyst combinations often restrict the efficient production of gene-targeted mice. Here, we describe the derivation of C57BL/6J (B6) ES lines and compare the effectiveness of two host blastocyst donors, FVB/NJ (FVB) and the coisogenic strain C57BL/6-Tyr(c)-2J (c2J), for the production of germline chimeras. We found that when B6 ES cells were injected into c2J host blastocysts, a high rate of coat-color chimerism was detected, and germline transmission could be obtained with few blastocyst injections. In all but one case, highly chimeric mice transmitted to 100% of their offspring. The injection of B6 ES cells into FVB blastocysts produced some chimeric mice. However; the proportion of coat-color chimerism was low, with many more blastocyst injections required to generate chimeras capable of germline transmission. Our data support the use of the coisogenic albino host strain, c2J, for the generation of germline-competent chimeric mice when using B6 ES cells.
The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of t... more The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of the adult mammalian brain, contains an extensive network of neuroblasts migrating rostrally to the olfactory bulb. Little is known about the endogenous proliferation signals for SVZ neural stem cells or guidance cues along the migration pathway. Here we show that the receptor tyrosine kinases EphB1-3 and EphA4 and their transmembrane ligands, ephrins-B2/3, are expressed by cells of the SVZ. Electron microscopy revealed ephrin-B ligands associated with SVZ astrocytes, which function as stem cells in this germinal zone. A three-day infusion of the ectodomain of either EphB2 or ephrin-B2 into the lateral ventricle disrupted migration of neuroblasts and increased cell proliferation. These results suggest that Eph/ephrin signaling is involved in the migration of neuroblasts in the adult SVZ and in either direct or indirect regulation of cell proliferation.
Uploads
Papers by Joanne Conover