Current methods of clinical assessment of muscle coordination and function after stroke do not pr... more Current methods of clinical assessment of muscle coordination and function after stroke do not provide information on deep muscles. The objective of this study was to examine how stroke affects both superficial and deep muscles' coordination and whether muscle function improves after rehabilitation. Muscle function, coordination, and activity of quadriceps femoris (QF) and hamstrings were evaluated in 10 stroke patients with mild hemiparesis and in 6 controls using velocity-encoded cine phase-contrast magnetic resonance imaging (VE-PC MRI), surface electromyography (sEMG), and maximal voluntary isometric contraction torque (MVC). At baseline, the peak muscle velocity of the rectus femoris (RF) and the ratio between the peak velocities of the RF and vasti were lower in the affected limb (AL) of stroke patients than in controls. Co-contraction of agonists and antagonists was higher in the AL than in controls. Muscle activity measured by sEMG showed similar behavior. After rehabilitation, the activity ratio of hamstrings and adductors to QF decreased slightly toward normal so there were no significant differences between the AL and controls. Impaired biarticular RF muscle function in stroke patients is the limiting factor during knee extension-flexion movements. After rehabilitation, improved functional performance was partly explained by the fact that the activities of the RF and vasti became more synchronized. VE-PC MRI can provide quantitative in vivo measurements of both superficial and deep muscles, and the information acquired after stroke can be utilized to render therapy more efficient and individually tailored.
Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) has been recently used ... more Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) has been recently used to quantify cerebral blood volume (CBV) and oxygen extraction ratio (OER). In the present study, we have exploited the intravascular BOLD model to assess gray matter (GM) OER at hemispheric level using parenchymal T(2) and CBV data at 1.5 T, obtained by single spin echo and dynamic susceptibility contrast (DSC) perfusion MRI, respectively. An OER of 0.40 +/- 0.07 was determined in gray matter for control subjects. A group of carotid stenosis (CS) patients (n = 22) was examined by multiparametric MRI. The degree of CS was determined by contrast agent-enhanced magnetic resonance angiography. Within the group, eight cases with <70% narrowing of a carotid lumen, nine cases with 70-99%, and five cases with complete occlusion of either carotid arteries were found. DSC MRI revealed abnormalities in 14 patients in dynamic parameters of perfusion images. These included four cases with elevated...
We present a novel method to integrate in vivo nuclear magnetic resonance spectroscopy (MRS) info... more We present a novel method to integrate in vivo nuclear magnetic resonance spectroscopy (MRS) information into the clinical diagnosis of brain tumours. Water-suppressed 1H MRS data were collected from 33 patients with brain tumours and 28 healthy controls in vivo. The data were treated in the time domain for removal of residual water and a region from the frequency domain (from 3.4 to 0.3 p.p.m.) together with the unsuppressed water signal were used as inputs for artificial neural network (ANN) analysis. The ANN distinguished tumour and normal tissue in each case and was able to classify benign and malignant gliomas as well as other brain tumours to match histology in a clinically useful manner with an accuracy of 82%. Thus the present data indicate existence of tumour tissue-specific metabolite phenotypes that can be detected by in vivo 1H MRS. We believe that a user-independent ANN analysis may provide an alternative method for tumour classification in clinical practice.
Cosmetic breast implants have become increasingly popular throughout the world. However, there is... more Cosmetic breast implants have become increasingly popular throughout the world. However, there is insufficient knowledge about the frequency and severity of local complications such as rupture and capsular contracture. A pilot study of 25 Finnish women with 50 cosmetic breast implants was organized to determine the feasibility of conducting a magnetic resonance imaging (MRI)-based study of rupture incidence. The pilot investigation included a clinical examination by a plastic surgeon, MRI scan, and self-administered questionnaire. The participation rate was 100%. Implants in our study represented a cross-section of the different generations of implants in Finland, with implant ages varying from 4 months to 20 years. The average implant size was 215 mL, typical in Finnish cosmetic surgery. MR images were evaluated by two independent readers. The first reader diagnosed six implants with intracapsular rupture, while the other diagnosed all implants as intact. The procedures of the feasibility study proved successful, and the results demonstrate the importance of a rigid image evaluation protocol with employment of well-defined rupture criteria, as well as the benefits of several image readers.
Current methods of clinical assessment of muscle coordination and function after stroke do not pr... more Current methods of clinical assessment of muscle coordination and function after stroke do not provide information on deep muscles. The objective of this study was to examine how stroke affects both superficial and deep muscles&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; coordination and whether muscle function improves after rehabilitation. Muscle function, coordination, and activity of quadriceps femoris (QF) and hamstrings were evaluated in 10 stroke patients with mild hemiparesis and in 6 controls using velocity-encoded cine phase-contrast magnetic resonance imaging (VE-PC MRI), surface electromyography (sEMG), and maximal voluntary isometric contraction torque (MVC). At baseline, the peak muscle velocity of the rectus femoris (RF) and the ratio between the peak velocities of the RF and vasti were lower in the affected limb (AL) of stroke patients than in controls. Co-contraction of agonists and antagonists was higher in the AL than in controls. Muscle activity measured by sEMG showed similar behavior. After rehabilitation, the activity ratio of hamstrings and adductors to QF decreased slightly toward normal so there were no significant differences between the AL and controls. Impaired biarticular RF muscle function in stroke patients is the limiting factor during knee extension-flexion movements. After rehabilitation, improved functional performance was partly explained by the fact that the activities of the RF and vasti became more synchronized. VE-PC MRI can provide quantitative in vivo measurements of both superficial and deep muscles, and the information acquired after stroke can be utilized to render therapy more efficient and individually tailored.
MAGMA Magnetic Resonance Materials in Physics, Biology, and Medicine, 1995
We present here a combination of time-domain signal analysis procedures for quantification of hum... more We present here a combination of time-domain signal analysis procedures for quantification of human brain in vivo 1H NMR spectroscopy (MRS) data. The method is based on a separate removal of a residual water resonance followed by a frequency-selective time-domain line-shape fitting analysis of metabolite signals. Calculation of absolute metabolite concentrations was based on the internal water concentration as a reference. The estimated average metabolite concentrations acquired from six regions of normal human brain with a single-voxel spin-echo technique for the N-acetylaspartate, creatine, and choline-containing compounds were 11.4 +/- 1.0, 6.5 +/- 0.5, and 1.7 +/- 0.2 mumol kg-1 wet weight, respectively. The time-domain analyses of in vivo 1H MRS data from different brain regions with their specific characteristics demonstrate a case in which the use of frequency-domain methods pose serious difficulties.
We have studied 14 patients with different grades of astrocytomas using 1H NMR spectroscopy in vi... more We have studied 14 patients with different grades of astrocytomas using 1H NMR spectroscopy in vivo. Typically, astrocytomas exhibited a low N-acetylaspartate peak, a prominent signal from choline group-containing compounds, and lactate in the 1H NMR spectra in vivo. The uncorrected choline/creatine + phosphocreatine peak area ratios were higher in tumors than in normal brain tissue. Absolute concentration of choline-containing compounds (1.74 +/- 0.09 mmol/L) in the normal brain tissue was not different in any grade of astrocytoma, but total creatine concentration in healthy brain (7.49 +/- 0.30 mmol/L) was higher than that in grade IV astrocytomas (4.84 +/- 0.89 mmol/L). Relaxation constants of choline-containing compounds did not differ in tumors from those determined in normal brain. Perchloric acid extracts of biopsy samples from 35 astrocytomas and 13 samples of normal temporal white matter were analyzed with 1H NMR. Total concentration of choline-containing compounds did not differ between controls and any grade of astrocytoma when the quantification was done in vitro. It is interesting that phosphorylcholine concentration was about twofold greater in grade IV astrocytomas than in controls or other grades of astrocytomas. We conclude that high phosphorylcholine in grade IV astrocytomas may be an indicator of degree of malignancy. The proportional changes within the group of choline-containing compounds observed in vitro were not reflected in the NMR properties of choline signal in vivo.
The aim of the present study was to investigate quantitative metabolite patterns in human brain t... more The aim of the present study was to investigate quantitative metabolite patterns in human brain tumors by 1H nuclear MR spectroscopy (1H MRS). Single voxel 1H MRS was used in studying metabolites in 23 primary brain tumors in vivo. The T2 relaxation times and saturation factors were determined for N-acetylaspartate (NAA), total creatine (Cr), choline-containing compounds (Cho), and water, which was used as an internal standard in computations of metabolite concentrations in vivo. Metabolites in biopsy specimens from 75 tumors were quantified by means of 1H MRS in vitro. The NAA concentrations were lower in brain tumors than in normal tissue in vitro and in vivo, irrespective of the histological type. The NAA was some threefold higher in vivo than in vitro, which could be due to partial volume effect and/or contributions from other metabolites to the peak at 2.02 ppm in vivo. Ratios of Cho to Cr concentrations were elevated in tumors relative to normal brain in vivo. Absolute Cho was some 50% higher in both benign astrocytomas and oligodendrogliomas in vivo than in normal brain. However, Cho concentration in vitro was significantly higher only in pituitary adenomas than in healthy white matter. Total creatine was approximately 50% lower in malignant astrocytomas and meningiomas than in normal brain. It is concluded that absolute concentrations of metabolites in vivo yield a different picture of tumor metabolites than that derived from uncorrected metabolite ratios.
International Journal of Radiation Oncology*Biology*Physics, 1995
External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses ... more External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. 1H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Eight patients with irradiated brain tumors were examined by means of in vivo 1H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. The concentration of the neuron-specific metabolite N-acetyl-L-aspartate (NAA) was 13.2 +/- 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 +/- 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-L-aspartate (NAA) concentrations. 1H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation.
European Journal of Obstetrics & Gynecology and Reproductive Biology, 2004
In this experimental study, we wanted to evaluate the informative value of dynamic magnetic reson... more In this experimental study, we wanted to evaluate the informative value of dynamic magnetic resonance imaging in pelvic floor anatomy during pelvic floor muscle contractions in asymptomatic women and women with urinary continence dysfunction. Eight outpatients with stress urinary symptoms and eight asymptomatic women were scanned with a 1.5 T GE Signa CV/i high-speed scanner with real time fluorescopic imaging possibilities. The static and dynamic anatomical status of the levator ani muscle was registered. In sagittal magnetic resonance imaging (MRI) images, the iliococcygeus muscle appeared as dome-shaped at rest. The thickness of the distal part of pubococcygeal muscle correlated significantly with EMG values during a maximal contraction. The most obvious defects seen in the pubococcygeal muscle were asymmetry in thickness and loss of fiber continuity. Functional and anatomic relationships in the pelvic floor can be demonstrated by the combined use of EMG and MRI, providing a better understanding of the pathophysiological mechanisms behind stress incontinence in women.
Current methods of clinical assessment of muscle coordination and function after stroke do not pr... more Current methods of clinical assessment of muscle coordination and function after stroke do not provide information on deep muscles. The objective of this study was to examine how stroke affects both superficial and deep muscles&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; coordination and whether muscle function improves after rehabilitation. Muscle function, coordination, and activity of quadriceps femoris (QF) and hamstrings were evaluated in 10 stroke patients with mild hemiparesis and in 6 controls using velocity-encoded cine phase-contrast magnetic resonance imaging (VE-PC MRI), surface electromyography (sEMG), and maximal voluntary isometric contraction torque (MVC). At baseline, the peak muscle velocity of the rectus femoris (RF) and the ratio between the peak velocities of the RF and vasti were lower in the affected limb (AL) of stroke patients than in controls. Co-contraction of agonists and antagonists was higher in the AL than in controls. Muscle activity measured by sEMG showed similar behavior. After rehabilitation, the activity ratio of hamstrings and adductors to QF decreased slightly toward normal so there were no significant differences between the AL and controls. Impaired biarticular RF muscle function in stroke patients is the limiting factor during knee extension-flexion movements. After rehabilitation, improved functional performance was partly explained by the fact that the activities of the RF and vasti became more synchronized. VE-PC MRI can provide quantitative in vivo measurements of both superficial and deep muscles, and the information acquired after stroke can be utilized to render therapy more efficient and individually tailored.
Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) has been recently used ... more Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) has been recently used to quantify cerebral blood volume (CBV) and oxygen extraction ratio (OER). In the present study, we have exploited the intravascular BOLD model to assess gray matter (GM) OER at hemispheric level using parenchymal T(2) and CBV data at 1.5 T, obtained by single spin echo and dynamic susceptibility contrast (DSC) perfusion MRI, respectively. An OER of 0.40 +/- 0.07 was determined in gray matter for control subjects. A group of carotid stenosis (CS) patients (n = 22) was examined by multiparametric MRI. The degree of CS was determined by contrast agent-enhanced magnetic resonance angiography. Within the group, eight cases with <70% narrowing of a carotid lumen, nine cases with 70-99%, and five cases with complete occlusion of either carotid arteries were found. DSC MRI revealed abnormalities in 14 patients in dynamic parameters of perfusion images. These included four cases with elevated...
We present a novel method to integrate in vivo nuclear magnetic resonance spectroscopy (MRS) info... more We present a novel method to integrate in vivo nuclear magnetic resonance spectroscopy (MRS) information into the clinical diagnosis of brain tumours. Water-suppressed 1H MRS data were collected from 33 patients with brain tumours and 28 healthy controls in vivo. The data were treated in the time domain for removal of residual water and a region from the frequency domain (from 3.4 to 0.3 p.p.m.) together with the unsuppressed water signal were used as inputs for artificial neural network (ANN) analysis. The ANN distinguished tumour and normal tissue in each case and was able to classify benign and malignant gliomas as well as other brain tumours to match histology in a clinically useful manner with an accuracy of 82%. Thus the present data indicate existence of tumour tissue-specific metabolite phenotypes that can be detected by in vivo 1H MRS. We believe that a user-independent ANN analysis may provide an alternative method for tumour classification in clinical practice.
Cosmetic breast implants have become increasingly popular throughout the world. However, there is... more Cosmetic breast implants have become increasingly popular throughout the world. However, there is insufficient knowledge about the frequency and severity of local complications such as rupture and capsular contracture. A pilot study of 25 Finnish women with 50 cosmetic breast implants was organized to determine the feasibility of conducting a magnetic resonance imaging (MRI)-based study of rupture incidence. The pilot investigation included a clinical examination by a plastic surgeon, MRI scan, and self-administered questionnaire. The participation rate was 100%. Implants in our study represented a cross-section of the different generations of implants in Finland, with implant ages varying from 4 months to 20 years. The average implant size was 215 mL, typical in Finnish cosmetic surgery. MR images were evaluated by two independent readers. The first reader diagnosed six implants with intracapsular rupture, while the other diagnosed all implants as intact. The procedures of the feasibility study proved successful, and the results demonstrate the importance of a rigid image evaluation protocol with employment of well-defined rupture criteria, as well as the benefits of several image readers.
Current methods of clinical assessment of muscle coordination and function after stroke do not pr... more Current methods of clinical assessment of muscle coordination and function after stroke do not provide information on deep muscles. The objective of this study was to examine how stroke affects both superficial and deep muscles&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#39; coordination and whether muscle function improves after rehabilitation. Muscle function, coordination, and activity of quadriceps femoris (QF) and hamstrings were evaluated in 10 stroke patients with mild hemiparesis and in 6 controls using velocity-encoded cine phase-contrast magnetic resonance imaging (VE-PC MRI), surface electromyography (sEMG), and maximal voluntary isometric contraction torque (MVC). At baseline, the peak muscle velocity of the rectus femoris (RF) and the ratio between the peak velocities of the RF and vasti were lower in the affected limb (AL) of stroke patients than in controls. Co-contraction of agonists and antagonists was higher in the AL than in controls. Muscle activity measured by sEMG showed similar behavior. After rehabilitation, the activity ratio of hamstrings and adductors to QF decreased slightly toward normal so there were no significant differences between the AL and controls. Impaired biarticular RF muscle function in stroke patients is the limiting factor during knee extension-flexion movements. After rehabilitation, improved functional performance was partly explained by the fact that the activities of the RF and vasti became more synchronized. VE-PC MRI can provide quantitative in vivo measurements of both superficial and deep muscles, and the information acquired after stroke can be utilized to render therapy more efficient and individually tailored.
MAGMA Magnetic Resonance Materials in Physics, Biology, and Medicine, 1995
We present here a combination of time-domain signal analysis procedures for quantification of hum... more We present here a combination of time-domain signal analysis procedures for quantification of human brain in vivo 1H NMR spectroscopy (MRS) data. The method is based on a separate removal of a residual water resonance followed by a frequency-selective time-domain line-shape fitting analysis of metabolite signals. Calculation of absolute metabolite concentrations was based on the internal water concentration as a reference. The estimated average metabolite concentrations acquired from six regions of normal human brain with a single-voxel spin-echo technique for the N-acetylaspartate, creatine, and choline-containing compounds were 11.4 +/- 1.0, 6.5 +/- 0.5, and 1.7 +/- 0.2 mumol kg-1 wet weight, respectively. The time-domain analyses of in vivo 1H MRS data from different brain regions with their specific characteristics demonstrate a case in which the use of frequency-domain methods pose serious difficulties.
We have studied 14 patients with different grades of astrocytomas using 1H NMR spectroscopy in vi... more We have studied 14 patients with different grades of astrocytomas using 1H NMR spectroscopy in vivo. Typically, astrocytomas exhibited a low N-acetylaspartate peak, a prominent signal from choline group-containing compounds, and lactate in the 1H NMR spectra in vivo. The uncorrected choline/creatine + phosphocreatine peak area ratios were higher in tumors than in normal brain tissue. Absolute concentration of choline-containing compounds (1.74 +/- 0.09 mmol/L) in the normal brain tissue was not different in any grade of astrocytoma, but total creatine concentration in healthy brain (7.49 +/- 0.30 mmol/L) was higher than that in grade IV astrocytomas (4.84 +/- 0.89 mmol/L). Relaxation constants of choline-containing compounds did not differ in tumors from those determined in normal brain. Perchloric acid extracts of biopsy samples from 35 astrocytomas and 13 samples of normal temporal white matter were analyzed with 1H NMR. Total concentration of choline-containing compounds did not differ between controls and any grade of astrocytoma when the quantification was done in vitro. It is interesting that phosphorylcholine concentration was about twofold greater in grade IV astrocytomas than in controls or other grades of astrocytomas. We conclude that high phosphorylcholine in grade IV astrocytomas may be an indicator of degree of malignancy. The proportional changes within the group of choline-containing compounds observed in vitro were not reflected in the NMR properties of choline signal in vivo.
The aim of the present study was to investigate quantitative metabolite patterns in human brain t... more The aim of the present study was to investigate quantitative metabolite patterns in human brain tumors by 1H nuclear MR spectroscopy (1H MRS). Single voxel 1H MRS was used in studying metabolites in 23 primary brain tumors in vivo. The T2 relaxation times and saturation factors were determined for N-acetylaspartate (NAA), total creatine (Cr), choline-containing compounds (Cho), and water, which was used as an internal standard in computations of metabolite concentrations in vivo. Metabolites in biopsy specimens from 75 tumors were quantified by means of 1H MRS in vitro. The NAA concentrations were lower in brain tumors than in normal tissue in vitro and in vivo, irrespective of the histological type. The NAA was some threefold higher in vivo than in vitro, which could be due to partial volume effect and/or contributions from other metabolites to the peak at 2.02 ppm in vivo. Ratios of Cho to Cr concentrations were elevated in tumors relative to normal brain in vivo. Absolute Cho was some 50% higher in both benign astrocytomas and oligodendrogliomas in vivo than in normal brain. However, Cho concentration in vitro was significantly higher only in pituitary adenomas than in healthy white matter. Total creatine was approximately 50% lower in malignant astrocytomas and meningiomas than in normal brain. It is concluded that absolute concentrations of metabolites in vivo yield a different picture of tumor metabolites than that derived from uncorrected metabolite ratios.
International Journal of Radiation Oncology*Biology*Physics, 1995
External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses ... more External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. 1H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Eight patients with irradiated brain tumors were examined by means of in vivo 1H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. The concentration of the neuron-specific metabolite N-acetyl-L-aspartate (NAA) was 13.2 +/- 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 +/- 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-L-aspartate (NAA) concentrations. 1H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation.
European Journal of Obstetrics & Gynecology and Reproductive Biology, 2004
In this experimental study, we wanted to evaluate the informative value of dynamic magnetic reson... more In this experimental study, we wanted to evaluate the informative value of dynamic magnetic resonance imaging in pelvic floor anatomy during pelvic floor muscle contractions in asymptomatic women and women with urinary continence dysfunction. Eight outpatients with stress urinary symptoms and eight asymptomatic women were scanned with a 1.5 T GE Signa CV/i high-speed scanner with real time fluorescopic imaging possibilities. The static and dynamic anatomical status of the levator ani muscle was registered. In sagittal magnetic resonance imaging (MRI) images, the iliococcygeus muscle appeared as dome-shaped at rest. The thickness of the distal part of pubococcygeal muscle correlated significantly with EMG values during a maximal contraction. The most obvious defects seen in the pubococcygeal muscle were asymmetry in thickness and loss of fiber continuity. Functional and anatomic relationships in the pelvic floor can be demonstrated by the combined use of EMG and MRI, providing a better understanding of the pathophysiological mechanisms behind stress incontinence in women.
Uploads
Papers by Jussi-pekka Usenius