Journal of materials research and technology, Mar 1, 2021
Abstract This article highlights the natural convection nanofluids flow of in an upright channel ... more Abstract This article highlights the natural convection nanofluids flow of in an upright channel undergoing chemical reaction and heat absorption. Five different nanoparticles such as titanium oxide (TiO2), aluminum oxide (Al2O3), copper oxide (CuO), copper (Cu) and silver (Ag) are considered in the analysis in water-based nanofluids. The problem is formulated in the form of partial differential equations. The precise results for the non-dimensional nanofluid concentration, temperature and velocity profiles, and the corresponding Sherwood numbers, Nusselt numbers and skin friction are derived in the form of rapid convergent series via the Laplace and finite sine-Fourier transforms. The comparison of nanofluids with water as base fluid added with five different nanoparticles is drawn and the effects of volume fraction of nanoparticles and diverse physical parameters for specified ranges, such as. 0.01 ≤ φ ≤ 0.05 , 0.5 ≤ S c ≤ 2.0 , 0.5 × 10 − 6 ≤ k c ≤ 1.7 × 10 − 6 , 0.5 ≤ Pr ≤ 2.7 , 5 ≤ Q ≤ 50 , 7 ≤ G r c ≤ 16 , 6 ≤ G r t ≤ 15 , on concentration, temperature and velocity fields are graphically underlined and discussed in details. We conclude that Ag-water has higher temperature due to higher thermal conductivity of Ag particles as compare to other nanoparticles Cu, TiO2, Al2O3 and CuO, while Al2O3-water has greater velocity than other nanofluids due to less density of Al2O3. Further, the expressions of skin friction, Sherwood numbers and Nusselt numbers are resolved on left plate and right plate of vertical channel and numerically expressed in tabular forms. Furthermore, it is originated that the heat transport rate enhances with increasing nanoparticle volume fraction.
In this study, the natural convection nanofluids flow through a channel formed by two vertical pa... more In this study, the natural convection nanofluids flow through a channel formed by two vertical parallel plates having distance d between them has been examined under the influence of the ramped velocity. Sodium alginate is considered as base fluid, and nanoparticles of titania ( TiO 2 ) and alumina ( Al 2 O 3 ) are added to it. Analytical and semianalytical results for temperature and velocity profiles are obtained with Laplace transform and inverse Laplace algorithms (Tzou, Stehfest, Talbot, Honig and Hirdes, and Fourier series), respectively. Furthermore, the impacts of nanoparticles, Prendtl number, heat absorption, and time on velocity and temperature are drawn graphically and discussed. The outcomes show that the high thermal conductivity of particles increases the temperatures, and the high density of particles decreases the velocities of the nanofluids. The current findings are compared to previous findings in the literature. In the tables, the effect of volume fraction on Nu...
This article investigates heat and mass transport enrichment in natural convection fractionalized... more This article investigates heat and mass transport enrichment in natural convection fractionalized nanofluid flow inside a channel with isothermal and ramped wall conditions under the effects of chemical reactions, radiation, heat absorption, and the Soret effect. To obtain the fractional model, the Caputo time-fractional derivative definition is used, and analytical results are obtained by the Laplace transform. In two base fluids, water and glycerin, the impacts of two nanoparticles, single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs), are investigated. The comparison of six distinct fluids, including water, water–SWCNT, water–MWCNT, glycerin, glycerin–SWCNT and glycerin–WMCNT, is explored graphically. Physical parameters’ effects on isothermal and ramped conditions are graphically depicted and explained in depth. For isothermal wall conditions, the variation in concentration, temperature and velocity is exponential, while for ramped wall conditions, t...
In this article, ethylene glycol (EG) + waterbased Maxwell nanofluid with radiation and Soret eff... more In this article, ethylene glycol (EG) + waterbased Maxwell nanofluid with radiation and Soret effects within two parallel plates has been investigated. The problem is formulated in the form of partial differential equations. The dimensionless governing equations for concentration, energy, and momentum are generalized by the fractional molecular diffusion, thermal flux, and shear stress defined by the Caputo–Fabrizio time fractional derivatives. The solutions of the problems are obtained via Laplace inversion numerical algorithm, namely, Stehfest’s. Nanoparticles of silver (Ag) are suspended in a mixture of EG + water to have a nanofluid. It is observed that the thermal conductivity of fluid is enhanced by increasing the values of time and volume fraction. The temperature and velocity of water-silver nanofluid are higher than those of ethylene glycol (EG) + water (H2O)-silver (Ag) nanofluid. The results are discussed at 2% of volume fraction. The results justified the thermo-physical...
The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magn... more The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magnetic field, heat generation, chemical reaction, ramped concentration, and ramped temperature is studied. Nanoparticles of copper (Cu) are inserted in sodium alginate (SA) to make nanofluid. The definition of time-fractional Caputo derivative is applied to have the fractional model. The analytical results of concentration, temperature, velocity, skin friction, Sherwood numbers, and Nusselt numbers for ramped and isothermal boundary conditions are obtained in the form of summation after applying the Laplace inverse transform. The effects of the fractional parameter ( ξ ) and physical parameters are depicted graphically. For higher values of ξ the velocity, concentration and temperature reduce. The fractional model is a better choice to control velocity, concentration, and temperature profiles. The energy enhances by increasing volume fraction ( ϕ ), whereas mass and flow of nanofluid reduc...
Abstract This article highlights the natural convection nanofluids flow of in an upright channel ... more Abstract This article highlights the natural convection nanofluids flow of in an upright channel undergoing chemical reaction and heat absorption. Five different nanoparticles such as titanium oxide (TiO2), aluminum oxide (Al2O3), copper oxide (CuO), copper (Cu) and silver (Ag) are considered in the analysis in water-based nanofluids. The problem is formulated in the form of partial differential equations. The precise results for the non-dimensional nanofluid concentration, temperature and velocity profiles, and the corresponding Sherwood numbers, Nusselt numbers and skin friction are derived in the form of rapid convergent series via the Laplace and finite sine-Fourier transforms. The comparison of nanofluids with water as base fluid added with five different nanoparticles is drawn and the effects of volume fraction of nanoparticles and diverse physical parameters for specified ranges, such as. 0.01 ≤ φ ≤ 0.05 , 0.5 ≤ S c ≤ 2.0 , 0.5 × 10 − 6 ≤ k c ≤ 1.7 × 10 − 6 , 0.5 ≤ Pr ≤ 2.7 , 5 ≤ Q ≤ 50 , 7 ≤ G r c ≤ 16 , 6 ≤ G r t ≤ 15 , on concentration, temperature and velocity fields are graphically underlined and discussed in details. We conclude that Ag-water has higher temperature due to higher thermal conductivity of Ag particles as compare to other nanoparticles Cu, TiO2, Al2O3 and CuO, while Al2O3-water has greater velocity than other nanofluids due to less density of Al2O3. Further, the expressions of skin friction, Sherwood numbers and Nusselt numbers are resolved on left plate and right plate of vertical channel and numerically expressed in tabular forms. Furthermore, it is originated that the heat transport rate enhances with increasing nanoparticle volume fraction.
Journal of materials research and technology, Mar 1, 2021
Abstract This article highlights the natural convection nanofluids flow of in an upright channel ... more Abstract This article highlights the natural convection nanofluids flow of in an upright channel undergoing chemical reaction and heat absorption. Five different nanoparticles such as titanium oxide (TiO2), aluminum oxide (Al2O3), copper oxide (CuO), copper (Cu) and silver (Ag) are considered in the analysis in water-based nanofluids. The problem is formulated in the form of partial differential equations. The precise results for the non-dimensional nanofluid concentration, temperature and velocity profiles, and the corresponding Sherwood numbers, Nusselt numbers and skin friction are derived in the form of rapid convergent series via the Laplace and finite sine-Fourier transforms. The comparison of nanofluids with water as base fluid added with five different nanoparticles is drawn and the effects of volume fraction of nanoparticles and diverse physical parameters for specified ranges, such as. 0.01 ≤ φ ≤ 0.05 , 0.5 ≤ S c ≤ 2.0 , 0.5 × 10 − 6 ≤ k c ≤ 1.7 × 10 − 6 , 0.5 ≤ Pr ≤ 2.7 , 5 ≤ Q ≤ 50 , 7 ≤ G r c ≤ 16 , 6 ≤ G r t ≤ 15 , on concentration, temperature and velocity fields are graphically underlined and discussed in details. We conclude that Ag-water has higher temperature due to higher thermal conductivity of Ag particles as compare to other nanoparticles Cu, TiO2, Al2O3 and CuO, while Al2O3-water has greater velocity than other nanofluids due to less density of Al2O3. Further, the expressions of skin friction, Sherwood numbers and Nusselt numbers are resolved on left plate and right plate of vertical channel and numerically expressed in tabular forms. Furthermore, it is originated that the heat transport rate enhances with increasing nanoparticle volume fraction.
In this study, the natural convection nanofluids flow through a channel formed by two vertical pa... more In this study, the natural convection nanofluids flow through a channel formed by two vertical parallel plates having distance d between them has been examined under the influence of the ramped velocity. Sodium alginate is considered as base fluid, and nanoparticles of titania ( TiO 2 ) and alumina ( Al 2 O 3 ) are added to it. Analytical and semianalytical results for temperature and velocity profiles are obtained with Laplace transform and inverse Laplace algorithms (Tzou, Stehfest, Talbot, Honig and Hirdes, and Fourier series), respectively. Furthermore, the impacts of nanoparticles, Prendtl number, heat absorption, and time on velocity and temperature are drawn graphically and discussed. The outcomes show that the high thermal conductivity of particles increases the temperatures, and the high density of particles decreases the velocities of the nanofluids. The current findings are compared to previous findings in the literature. In the tables, the effect of volume fraction on Nu...
This article investigates heat and mass transport enrichment in natural convection fractionalized... more This article investigates heat and mass transport enrichment in natural convection fractionalized nanofluid flow inside a channel with isothermal and ramped wall conditions under the effects of chemical reactions, radiation, heat absorption, and the Soret effect. To obtain the fractional model, the Caputo time-fractional derivative definition is used, and analytical results are obtained by the Laplace transform. In two base fluids, water and glycerin, the impacts of two nanoparticles, single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs), are investigated. The comparison of six distinct fluids, including water, water–SWCNT, water–MWCNT, glycerin, glycerin–SWCNT and glycerin–WMCNT, is explored graphically. Physical parameters’ effects on isothermal and ramped conditions are graphically depicted and explained in depth. For isothermal wall conditions, the variation in concentration, temperature and velocity is exponential, while for ramped wall conditions, t...
In this article, ethylene glycol (EG) + waterbased Maxwell nanofluid with radiation and Soret eff... more In this article, ethylene glycol (EG) + waterbased Maxwell nanofluid with radiation and Soret effects within two parallel plates has been investigated. The problem is formulated in the form of partial differential equations. The dimensionless governing equations for concentration, energy, and momentum are generalized by the fractional molecular diffusion, thermal flux, and shear stress defined by the Caputo–Fabrizio time fractional derivatives. The solutions of the problems are obtained via Laplace inversion numerical algorithm, namely, Stehfest’s. Nanoparticles of silver (Ag) are suspended in a mixture of EG + water to have a nanofluid. It is observed that the thermal conductivity of fluid is enhanced by increasing the values of time and volume fraction. The temperature and velocity of water-silver nanofluid are higher than those of ethylene glycol (EG) + water (H2O)-silver (Ag) nanofluid. The results are discussed at 2% of volume fraction. The results justified the thermo-physical...
The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magn... more The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magnetic field, heat generation, chemical reaction, ramped concentration, and ramped temperature is studied. Nanoparticles of copper (Cu) are inserted in sodium alginate (SA) to make nanofluid. The definition of time-fractional Caputo derivative is applied to have the fractional model. The analytical results of concentration, temperature, velocity, skin friction, Sherwood numbers, and Nusselt numbers for ramped and isothermal boundary conditions are obtained in the form of summation after applying the Laplace inverse transform. The effects of the fractional parameter ( ξ ) and physical parameters are depicted graphically. For higher values of ξ the velocity, concentration and temperature reduce. The fractional model is a better choice to control velocity, concentration, and temperature profiles. The energy enhances by increasing volume fraction ( ϕ ), whereas mass and flow of nanofluid reduc...
Abstract This article highlights the natural convection nanofluids flow of in an upright channel ... more Abstract This article highlights the natural convection nanofluids flow of in an upright channel undergoing chemical reaction and heat absorption. Five different nanoparticles such as titanium oxide (TiO2), aluminum oxide (Al2O3), copper oxide (CuO), copper (Cu) and silver (Ag) are considered in the analysis in water-based nanofluids. The problem is formulated in the form of partial differential equations. The precise results for the non-dimensional nanofluid concentration, temperature and velocity profiles, and the corresponding Sherwood numbers, Nusselt numbers and skin friction are derived in the form of rapid convergent series via the Laplace and finite sine-Fourier transforms. The comparison of nanofluids with water as base fluid added with five different nanoparticles is drawn and the effects of volume fraction of nanoparticles and diverse physical parameters for specified ranges, such as. 0.01 ≤ φ ≤ 0.05 , 0.5 ≤ S c ≤ 2.0 , 0.5 × 10 − 6 ≤ k c ≤ 1.7 × 10 − 6 , 0.5 ≤ Pr ≤ 2.7 , 5 ≤ Q ≤ 50 , 7 ≤ G r c ≤ 16 , 6 ≤ G r t ≤ 15 , on concentration, temperature and velocity fields are graphically underlined and discussed in details. We conclude that Ag-water has higher temperature due to higher thermal conductivity of Ag particles as compare to other nanoparticles Cu, TiO2, Al2O3 and CuO, while Al2O3-water has greater velocity than other nanofluids due to less density of Al2O3. Further, the expressions of skin friction, Sherwood numbers and Nusselt numbers are resolved on left plate and right plate of vertical channel and numerically expressed in tabular forms. Furthermore, it is originated that the heat transport rate enhances with increasing nanoparticle volume fraction.
Uploads
Papers by KASHIF SADIQ