The Permian-Triassic boundary recorded in marine sediments from the Redback 2 drill hole in the P... more The Permian-Triassic boundary recorded in marine sediments from the Redback 2 drill hole in the Perth basin, Western Australia, is marked by a lithological change from massive bioturbated dark-grey mudstone to dark-grey mudstone, characterized by microbial laminated texture and the presence of minor carbonate layers. The boundary is also marked by an absense of framboidal pyrite and presence of euhedral pyrite, and by a change from D. parvithola to K. saeptatus spore-pollen palinofacies. LA-ICPMS analysis of pyrite for 16 elements reveals a 2-350 times enrichment relative to the shale matrix. Framboidal syngenetic pyrite is the most enriched, followed by diagenetic pyrite. The compositions of framboidal pyrite are used as an ocean trace element proxy in black shales [1]. The pyrite of Late Permian is enriched 2-300 times in Co, Ni, Pb, Bi, Tl, Ag, As, and Sb compared to Triassic pyrite. We infer the pulses of additional enrichment by an order of magnitude in Co, Ni, As and Tl below ...
ABSTRACT Ilmenite and zircon megacrysts, among other minerals representing the subcontinental lit... more ABSTRACT Ilmenite and zircon megacrysts, among other minerals representing the subcontinental lithospheric mantle, are exclusively delivered to the surface by kimberlite magmas. The intimate association of ilmenite and zircon with their transporting kimberlite melts still remains perplexing, as these minerals do not belong to the kimberlite liquidus assemblage at crustal pressures. The ilmenite and zircon megacrysts from the Monastery kimberlite (South Africa) represent a textbook example of the megacryst suite. The megacrysts show substantial chemical modification along contacts with the host kimberlite. Fine-grained “reaction” assemblages, comprising minerals rich in Zr (baddeleyite and sodium–zirconium silicates) and Ti (Ti–Fe oxides, perovskite, sphene, kassite), are present around zircon and ilmenite, respectively. At the zircon–ilmenite contact, chemical contributions from both minerals are recorded in Zr–Ti-rich phases such as calzirtite and zirkelite. The megacrysts contain crystallised melt pools and secondary melt inclusions in healed fractures; their mineral assemblage is dominated by alkali-bearing phases, including silicates (nepheline, kalsilite, sodalite, phlogopite–tetraferriphlogopite), titanates (priderite, freudenbergite), zirconium silicates (khibinskite, parakeldyshite), carbonates (zemkorite, eitelite), phosphates (apatite, bradleyite, nahpoite), sulfates (aphthitalite) and chlorides (halite, sylvite). These inclusions and melt pools are interpreted to be produced by reaction between the megacrysts and the transporting kimberlite melt, which infiltrated fractures in the megacrysts. Most secondary minerals at contacts with kimberlite require a supply of Ca, which is readily available in the carbonatite component of the kimberlite magma. The enrichment of the encapsulated mineral assemblages in alkali and volatile elements (Na, K, S, Cl) also appears to originate from the kimberlite melt.
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tenness... more Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.
Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, ... more Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.
ABSTRACT Mantle polymict breccias sampled by kimberlite magmas are complex mixtures of mantle min... more ABSTRACT Mantle polymict breccias sampled by kimberlite magmas are complex mixtures of mantle minerals and rock clasts, cemented together by olivine, phlogopite, orthopyroxene, ilmenite, rutile and sulphides. Because of the kimberlite-like texture (i.e. mineral clasts of diverse origin and composition set in a magmatic matrix) and the large geochemical heterogeneity preserved in polymict breccias, these rocks are believed to derive from primitive or precursor kimberlite magmas. Therefore, the study of such xenoliths can provide constraints on the processes occurring in the mantle during the early stages of kimberlite ascent, and possibly on the composition of kimberlite melts. To constrain the petrogenesis of these unusual rocks, we have studied two samples of polymict breccia from the Bultfontein kimberlite (Kimberley, South Africa) and compared our results with published data for other polymict breccias. The most abundant phase in the matrix of the studied samples is olivine with a narrow range in Mg# (similar to 88-89), but variable Ni-Mn-Ca contents. Similar compositions are characteristic of magmatic olivine in the Bultfontein and nearby De Beers kimberlites. Orthopyroxene is the dominant phase in the matrix of polymict breccias surrounding clinopyroxene clasts, which, like the other silicate mineral clasts, are highly resorbed. The matrix orthopyroxene exhibits variable compositions, with significant enrichment in Ca, Na, Cr, Sr, Ba and light rare earth elements in the grains adjacent to clinopyroxene. The other main matrix phases (phlogopite, ilmenite and rutile) also display variable compositions. Matrix olivine hosts primary carbonate-rich inclusions similar to those observed in polymict breccia ilmenite. These inclusions were previously interpreted as an alkali-carbonate melt trapped during ilmenite growth. This alkali-carbonate melt may represent the parental melt to the matrix minerals of the polymict breccias. The variable composition of the matrix minerals is attributed to rapid, small-scale (centimetre to millimetre) variations in the melt composition owing to clast dissolution, possibly coupled with wall-rock assimilation, closely followed by fast cooling. Partial digestion of silicate porphyroclasts increased the Si content of the matrix melt, thus allowing crystallization of orthopyroxene. Further arguments in favour of a genetic relationship between polymict breccias and kimberlite magmas are provided by (1) similar Hf isotope compositions of polymict breccia ilmenite and South African kimberlites, (2) overlapping olivine compositions in polymict breccias and the host Bultfontein kimberlite, and (3) the occurrence of alkali-carbonate inclusions in polymict breccia and kimberlite minerals. Polymict breccias are interpreted as failed kimberlite intrusions, which metasomatized the magmatic conduit through which subsequent pulses of kimberlite magmas ascended. These wall-rock interactions would limit reactions between later pulses of kimberlite melt and mantle wall-rocks, thus enhancing the ability of kimberlite magmas to reach the surface.
In this study we investigate the effect that the mineral composition has on the quantification of... more In this study we investigate the effect that the mineral composition has on the quantification of sulphur by Laser Ablation ICP-MS (LA-ICP-MS) between a range of sulphide minerals: pyrite, pyrrhotite, bornite, chalcopyrite, sphalerite, pentlandite and tetrahedrite.
ABSTRACT Mantle xenoliths sampled by kimberlite and alkali basalt magmas show a range of metasoma... more ABSTRACT Mantle xenoliths sampled by kimberlite and alkali basalt magmas show a range of metasomatic styles, but direct evidence for the nature of the metasomatising fluids is often elusive. It has been suggested that carbonate-rich melts produced by partial melting of carbonated peridotites and eclogites play an important role in modifying the composition of the lithospheric mantle. These mantle-derived carbonate melts are often inferred to be enriched in alkali elements; however, alkali-rich carbonate fluids have only been reported as micro-inclusions in diamonds and as unique melts involved in the formation of the Udachnaya-East kimberlite (Yakutia, Russia). In this paper we present the first direct evidence for alkali-carbonate melts in the shallow lithospheric mantle (similar to 110-115 km), above the diamond stability field. These alkali-carbonate melts are preserved in primary multiphase inclusions hosted by large metasomatic ilmenite grains contained in a polymict mantle xenolith from the Bultfontein kimberlite (Kimberley, South Africa). The inclusions host abundant carbonates (magnesite, dolomite, and K-Na-Ca carbonates), kalsilite, phlogopite, K-Na titanates, and phosphates, with lesser amounts of olivine, chlorides, and alkali sulfates. Textural and chemical observations indicate that the alkali-carbonate melt likely derived from primary or precursor kimberlite magmas. Our findings extend the evidence for alkali-carbonate melts/fluids permeating the Earth mantle outside the diamond stability field and provide new insights into the chemical features of previously hypothesized melts. As metasomatism by alkali-rich carbonate melts is often reported to affect mantle xenoliths, and predicted from experimental studies, the fluid type documented here likely represent a major metasomatising agent in the Earth's lithospheric mantle.
ABSTRACT Brothers caldera volcano is a submarine volcano of dacitic composition, located on the K... more ABSTRACT Brothers caldera volcano is a submarine volcano of dacitic composition, located on the Kermadec arc, New Zealand. It hosts the NW caldera vent field perched on the steep slope of the caldera walls and includes numerous, active, high-temperature (max 302°C) chimneys and a greater amount of dead, sulfide-rich spires. Petrographic studies of these chimneys show that three main zones can occur within the chimneys: a chalcopyrite-rich core, surrounded by a sulfate-dominated zone, which is in turn mantled by an external rind of Fe oxides, calcite, and silicates. Four chimney types are identified based on the relative proportions of the chalcopyrite and sulfate layers and the presence or absence of anhydrite. Two are Cu rich, i.e., chalcopyrite-sulfate and chalcopyrite-bornite chimneys, and two are Zn rich, i.e., sphalerite-barite and sphalerite-chalcopyrite. Chimney growth begins with the formation of a sulfate wall upon which sulfides precipitate. Later, zone refining results in a chalcopyrite-rich core with pyrite/marcasite and sphalerite occurring predominantly near the outer margins. In chalcopyrite-bornite chimneys, the chalcopyrite core rapidly loses permeability and limits the thickness of the surrounding sulfate layer. In these chimneys, bornite, chalcocite, and covellite form along the outer margin of the chalcopyrite zone as a result of oxidation by seawater. Zinc-rich chimneys display a more vertical zonation and their growth involves an upward-advancing barite cap followed by chalcopyrite deposition (if present) nearer the base. The vertical zonation and lack of anhydrite in these chimneys also implies that larger chalcopyrite and anhydrite deposits may exist subsea floor. The different chimney types are related to subsea-floor permeability, the amount of fluid mixing that occurs prior to venting, and heterogeneous fluid compositions. The occurrence of specular hematite and Bi or Au tellurides associated with chalcopyrite are consistent with magmatic contributions to the NW caldera vent site. These tellurides are the first gold-bearing phase to be identified in these chimneys, and the Bi-Au association suggests that gold enrichment up to 91 ppm is due to scavenging by liquid bismuth. The presence of tellurides in Brothers chimneys have implications for other telluride-bearing deposits, such those in the Urals. Likewise, other aspects of the mineralogy (i.e., textures) and zonation, including the implied subsea-floor deposition, presented here from an active, undeformed environment can aid in understanding ancient volcanogenic massive sulfide (VMS) deposits that have undergone various degrees of metamorphism.
ABSTRACT Porphyry-style mineralization is related to the intrusion and crystallization of small s... more ABSTRACT Porphyry-style mineralization is related to the intrusion and crystallization of small stocks, which can be of different compositions (from intermediate to felsic) and can intrude into different host rocks (from magmatic to sedimentary). We used cathodoluminescence and electron probe microanalysis to study the internal textures of more than 300 quartz eyes from six porphyry deposits, Panguna (Papua New Guinea), Far Southeast porphyry (Philippines), Batu Hijau (Indonesia), Antapaccay (Peru), Rio Blanco (Chile) and Climax (USA). Significant diversity of the internal textures in quartz eyes was revealed, sometimes even within a single sample. Quartz grains with Ti-rich cores surrounded by Ti-poor mantles were found next to the grains showing the opposite Ti distribution or only slight Ti fluctuations.We propose that diversity of the internal pat- terns in quartz eyes can actually reflect in situ crystallization history, and that prolonged crystallization after magma emplacement under conditions of continuous cooling can account for the observed features of internal textures. For- mation of quartz eyes begins at high temperatures with crystallization of high titanium Quartz 1, which as the melt becomes more and more evolved and cooler, is overgrown by low Ti Quartz 2. Subsequent fluid exsolution brings about dramatic change in the melt composition: OH2, alkalis and other Cl-complexed elements partition into the fluid phase, whereas Ti stays in the melt, contributing to a rapid increase in Ti activity. Separation of the fluid and its further cooling causes disequilibrium in the system, and the Quartz 2 becomes partially resorbed. Exsolution of the fluid gradually builds up the pressure until it exceeds the yield strength of the host rocks and they then fracture. This pressure release most likely triggers crystallization of Quartz 3, which is higher in Ti than Quartz 2 because Ti activity in the melt is higher and pressure of crystallization is lower. As a result of the reaction between the exsolved fluid and quartz a new phase, a so called ‘heavy fluid’ forms. From this phase Quartz 4 crystallizes. This phase has extremely high metal-carrying capacity, and may give a rise to mineralizing fluids. Finally, on the brink of the subsolidus stage, groundmass quartz crystallizes. Prolonged crystalli- zation under conditions of continuous cooling accounts better for the diversity of CL textures than crystallization in different parts of a deep magma chamber. It is also in a better agreement with the existing model for formation of porphyry-style deposits.
ABSTRACT Metasomatism of the lithospheric mantle sometimes produces unusual assemblages containin... more ABSTRACT Metasomatism of the lithospheric mantle sometimes produces unusual assemblages containing native metals and alloys, which provide important insight into metasomatic processes in the mantle. In this study, we describe the metasomatic enrichment of a refractory harzburgite xenolith in Ni, Fe and, to a lesser extent, Cu, Co, As and Sb. The xenolith (XM1/422) derives from the Bultfontein kimberlite (Kimberley, South Africa) and hosts Ni mineralisation that includes native nickel (Ni84.5-98.0), heazlewoodite (Ni3S2) and Ni-rich silicates (e.g. up to 37.5 wt % NiO in olivine, and 22.4 wt % NiO in phlogopite). The presence of several mineral phases enriched in alkali and volatile species (e.g. phlogopite, phosphates, carbonates, chlorides, djerfisherite) indicates that the transition metal cations were likely introduced during metasomatism by alkali-rich C–O–H fluids or alkali-carbonate melts. It is postulated that sulphide breakdown and fluid reaction with refractory mantle rocks contributed to the fluid’s enrichment in Ni and other metallic cations. The Ni-rich assemblages of xenolith XM1/422 show local chemical disequilibrium, and modelling of the Ni diffusion profiles adjacent to olivine-native nickel and olivine-heazlewoodite grain boundaries, suggests a close temporal relationship between Ni-rich metasomatism and subsequent entrainment by the kimberlite magma. However, metal-rich metasomatism has also been observed in other lithospheric mantle domains, including orogenic peridotitic massifs and the suboceanic mantle; regions unaffected by kimberlite magmatsim. As micro-scale occurrences of metallic phases are easily overlooked, it is possible that metal-rich metasomatism is more widespread in the Earth’s mantle than previously recognised.
ABSTRACT Hyperspectral cathodoluminescence (CL) mapping, combined with electron probe microanalys... more ABSTRACT Hyperspectral cathodoluminescence (CL) mapping, combined with electron probe microanalysis (EPMA) and Fourier transform infrared spectroscopy, was used for the reconstruction of crystallization conditions of quartz from porphyry environments. Quartz eyes from the two porphyry deposits Rio Blanco (Chile) and Climax (U.S.A.) were studied. Three peaks are found to be responsible for the total CL emission: 1.93, 2.05, and 2.72 eV. The first two peaks are assigned to O-M (with M being an alkali ion) and oxygen vacancies, respectively. The 2.72 eV peak shows a linear correlation with the Ti concentration determined by EPMA point measurements. In addition, a negative correlation between the 1.93 eV emission and the Al concentration was observed. Quartz grains often form clusters in which adjacent grains show identical CL patterns, indicating that they crystallized attached to each other and were not disturbed later. Quartz cores display sector zoning and enrichment in Li, OH, and sometimes Al, which points to rapid crystallization from an extremely evolved melt. Quartz rims show high Ti, and low Li and OH contents, indicating crystallization from a less evolved melt either at higher temperatures or at higher titanium activities. The Al and Ti distribution patterns are frequently not correlated and both show uneven distribution indicating fast growth from inhomogeneous melts. Only Ti displays sharp transitions and fine oscillatory zoning, which can be explained by the higher mobility of Al in the quartz lattice. The quartz eyes crystallized after magma emplacement under non-equilibrium conditions. It is likely that the crystallization occurred from the melt enriched in Al, Li, and OH and probably other metals and/or volatiles on the brink of fluid exsolution. Subsequent fluid exsolution brought about disequilibrium to the system, resulting in dissolution of quartz and redistribution of elements between the melt and the fluid. The OH, Li, and other alkali metals and volatiles partitioned into the fluid, whereas Ti and Al remained in the melt. Resorption of quartz caused by the fluid exsolution continued until equilibrium was reached again, after which crystallization of quartz rims began from the water-, alkali-, and volatile-poor melt with higher Ti activity. Further accumulation of Al and Ti in the residual melt led to crystallization of extremely Al- and Ti-rich quartz
The Permian-Triassic boundary recorded in marine sediments from the Redback 2 drill hole in the P... more The Permian-Triassic boundary recorded in marine sediments from the Redback 2 drill hole in the Perth basin, Western Australia, is marked by a lithological change from massive bioturbated dark-grey mudstone to dark-grey mudstone, characterized by microbial laminated texture and the presence of minor carbonate layers. The boundary is also marked by an absense of framboidal pyrite and presence of euhedral pyrite, and by a change from D. parvithola to K. saeptatus spore-pollen palinofacies. LA-ICPMS analysis of pyrite for 16 elements reveals a 2-350 times enrichment relative to the shale matrix. Framboidal syngenetic pyrite is the most enriched, followed by diagenetic pyrite. The compositions of framboidal pyrite are used as an ocean trace element proxy in black shales [1]. The pyrite of Late Permian is enriched 2-300 times in Co, Ni, Pb, Bi, Tl, Ag, As, and Sb compared to Triassic pyrite. We infer the pulses of additional enrichment by an order of magnitude in Co, Ni, As and Tl below ...
ABSTRACT Ilmenite and zircon megacrysts, among other minerals representing the subcontinental lit... more ABSTRACT Ilmenite and zircon megacrysts, among other minerals representing the subcontinental lithospheric mantle, are exclusively delivered to the surface by kimberlite magmas. The intimate association of ilmenite and zircon with their transporting kimberlite melts still remains perplexing, as these minerals do not belong to the kimberlite liquidus assemblage at crustal pressures. The ilmenite and zircon megacrysts from the Monastery kimberlite (South Africa) represent a textbook example of the megacryst suite. The megacrysts show substantial chemical modification along contacts with the host kimberlite. Fine-grained “reaction” assemblages, comprising minerals rich in Zr (baddeleyite and sodium–zirconium silicates) and Ti (Ti–Fe oxides, perovskite, sphene, kassite), are present around zircon and ilmenite, respectively. At the zircon–ilmenite contact, chemical contributions from both minerals are recorded in Zr–Ti-rich phases such as calzirtite and zirkelite. The megacrysts contain crystallised melt pools and secondary melt inclusions in healed fractures; their mineral assemblage is dominated by alkali-bearing phases, including silicates (nepheline, kalsilite, sodalite, phlogopite–tetraferriphlogopite), titanates (priderite, freudenbergite), zirconium silicates (khibinskite, parakeldyshite), carbonates (zemkorite, eitelite), phosphates (apatite, bradleyite, nahpoite), sulfates (aphthitalite) and chlorides (halite, sylvite). These inclusions and melt pools are interpreted to be produced by reaction between the megacrysts and the transporting kimberlite melt, which infiltrated fractures in the megacrysts. Most secondary minerals at contacts with kimberlite require a supply of Ca, which is readily available in the carbonatite component of the kimberlite magma. The enrichment of the encapsulated mineral assemblages in alkali and volatile elements (Na, K, S, Cl) also appears to originate from the kimberlite melt.
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tenness... more Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.
Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, ... more Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.
ABSTRACT Mantle polymict breccias sampled by kimberlite magmas are complex mixtures of mantle min... more ABSTRACT Mantle polymict breccias sampled by kimberlite magmas are complex mixtures of mantle minerals and rock clasts, cemented together by olivine, phlogopite, orthopyroxene, ilmenite, rutile and sulphides. Because of the kimberlite-like texture (i.e. mineral clasts of diverse origin and composition set in a magmatic matrix) and the large geochemical heterogeneity preserved in polymict breccias, these rocks are believed to derive from primitive or precursor kimberlite magmas. Therefore, the study of such xenoliths can provide constraints on the processes occurring in the mantle during the early stages of kimberlite ascent, and possibly on the composition of kimberlite melts. To constrain the petrogenesis of these unusual rocks, we have studied two samples of polymict breccia from the Bultfontein kimberlite (Kimberley, South Africa) and compared our results with published data for other polymict breccias. The most abundant phase in the matrix of the studied samples is olivine with a narrow range in Mg# (similar to 88-89), but variable Ni-Mn-Ca contents. Similar compositions are characteristic of magmatic olivine in the Bultfontein and nearby De Beers kimberlites. Orthopyroxene is the dominant phase in the matrix of polymict breccias surrounding clinopyroxene clasts, which, like the other silicate mineral clasts, are highly resorbed. The matrix orthopyroxene exhibits variable compositions, with significant enrichment in Ca, Na, Cr, Sr, Ba and light rare earth elements in the grains adjacent to clinopyroxene. The other main matrix phases (phlogopite, ilmenite and rutile) also display variable compositions. Matrix olivine hosts primary carbonate-rich inclusions similar to those observed in polymict breccia ilmenite. These inclusions were previously interpreted as an alkali-carbonate melt trapped during ilmenite growth. This alkali-carbonate melt may represent the parental melt to the matrix minerals of the polymict breccias. The variable composition of the matrix minerals is attributed to rapid, small-scale (centimetre to millimetre) variations in the melt composition owing to clast dissolution, possibly coupled with wall-rock assimilation, closely followed by fast cooling. Partial digestion of silicate porphyroclasts increased the Si content of the matrix melt, thus allowing crystallization of orthopyroxene. Further arguments in favour of a genetic relationship between polymict breccias and kimberlite magmas are provided by (1) similar Hf isotope compositions of polymict breccia ilmenite and South African kimberlites, (2) overlapping olivine compositions in polymict breccias and the host Bultfontein kimberlite, and (3) the occurrence of alkali-carbonate inclusions in polymict breccia and kimberlite minerals. Polymict breccias are interpreted as failed kimberlite intrusions, which metasomatized the magmatic conduit through which subsequent pulses of kimberlite magmas ascended. These wall-rock interactions would limit reactions between later pulses of kimberlite melt and mantle wall-rocks, thus enhancing the ability of kimberlite magmas to reach the surface.
In this study we investigate the effect that the mineral composition has on the quantification of... more In this study we investigate the effect that the mineral composition has on the quantification of sulphur by Laser Ablation ICP-MS (LA-ICP-MS) between a range of sulphide minerals: pyrite, pyrrhotite, bornite, chalcopyrite, sphalerite, pentlandite and tetrahedrite.
ABSTRACT Mantle xenoliths sampled by kimberlite and alkali basalt magmas show a range of metasoma... more ABSTRACT Mantle xenoliths sampled by kimberlite and alkali basalt magmas show a range of metasomatic styles, but direct evidence for the nature of the metasomatising fluids is often elusive. It has been suggested that carbonate-rich melts produced by partial melting of carbonated peridotites and eclogites play an important role in modifying the composition of the lithospheric mantle. These mantle-derived carbonate melts are often inferred to be enriched in alkali elements; however, alkali-rich carbonate fluids have only been reported as micro-inclusions in diamonds and as unique melts involved in the formation of the Udachnaya-East kimberlite (Yakutia, Russia). In this paper we present the first direct evidence for alkali-carbonate melts in the shallow lithospheric mantle (similar to 110-115 km), above the diamond stability field. These alkali-carbonate melts are preserved in primary multiphase inclusions hosted by large metasomatic ilmenite grains contained in a polymict mantle xenolith from the Bultfontein kimberlite (Kimberley, South Africa). The inclusions host abundant carbonates (magnesite, dolomite, and K-Na-Ca carbonates), kalsilite, phlogopite, K-Na titanates, and phosphates, with lesser amounts of olivine, chlorides, and alkali sulfates. Textural and chemical observations indicate that the alkali-carbonate melt likely derived from primary or precursor kimberlite magmas. Our findings extend the evidence for alkali-carbonate melts/fluids permeating the Earth mantle outside the diamond stability field and provide new insights into the chemical features of previously hypothesized melts. As metasomatism by alkali-rich carbonate melts is often reported to affect mantle xenoliths, and predicted from experimental studies, the fluid type documented here likely represent a major metasomatising agent in the Earth's lithospheric mantle.
ABSTRACT Brothers caldera volcano is a submarine volcano of dacitic composition, located on the K... more ABSTRACT Brothers caldera volcano is a submarine volcano of dacitic composition, located on the Kermadec arc, New Zealand. It hosts the NW caldera vent field perched on the steep slope of the caldera walls and includes numerous, active, high-temperature (max 302°C) chimneys and a greater amount of dead, sulfide-rich spires. Petrographic studies of these chimneys show that three main zones can occur within the chimneys: a chalcopyrite-rich core, surrounded by a sulfate-dominated zone, which is in turn mantled by an external rind of Fe oxides, calcite, and silicates. Four chimney types are identified based on the relative proportions of the chalcopyrite and sulfate layers and the presence or absence of anhydrite. Two are Cu rich, i.e., chalcopyrite-sulfate and chalcopyrite-bornite chimneys, and two are Zn rich, i.e., sphalerite-barite and sphalerite-chalcopyrite. Chimney growth begins with the formation of a sulfate wall upon which sulfides precipitate. Later, zone refining results in a chalcopyrite-rich core with pyrite/marcasite and sphalerite occurring predominantly near the outer margins. In chalcopyrite-bornite chimneys, the chalcopyrite core rapidly loses permeability and limits the thickness of the surrounding sulfate layer. In these chimneys, bornite, chalcocite, and covellite form along the outer margin of the chalcopyrite zone as a result of oxidation by seawater. Zinc-rich chimneys display a more vertical zonation and their growth involves an upward-advancing barite cap followed by chalcopyrite deposition (if present) nearer the base. The vertical zonation and lack of anhydrite in these chimneys also implies that larger chalcopyrite and anhydrite deposits may exist subsea floor. The different chimney types are related to subsea-floor permeability, the amount of fluid mixing that occurs prior to venting, and heterogeneous fluid compositions. The occurrence of specular hematite and Bi or Au tellurides associated with chalcopyrite are consistent with magmatic contributions to the NW caldera vent site. These tellurides are the first gold-bearing phase to be identified in these chimneys, and the Bi-Au association suggests that gold enrichment up to 91 ppm is due to scavenging by liquid bismuth. The presence of tellurides in Brothers chimneys have implications for other telluride-bearing deposits, such those in the Urals. Likewise, other aspects of the mineralogy (i.e., textures) and zonation, including the implied subsea-floor deposition, presented here from an active, undeformed environment can aid in understanding ancient volcanogenic massive sulfide (VMS) deposits that have undergone various degrees of metamorphism.
ABSTRACT Porphyry-style mineralization is related to the intrusion and crystallization of small s... more ABSTRACT Porphyry-style mineralization is related to the intrusion and crystallization of small stocks, which can be of different compositions (from intermediate to felsic) and can intrude into different host rocks (from magmatic to sedimentary). We used cathodoluminescence and electron probe microanalysis to study the internal textures of more than 300 quartz eyes from six porphyry deposits, Panguna (Papua New Guinea), Far Southeast porphyry (Philippines), Batu Hijau (Indonesia), Antapaccay (Peru), Rio Blanco (Chile) and Climax (USA). Significant diversity of the internal textures in quartz eyes was revealed, sometimes even within a single sample. Quartz grains with Ti-rich cores surrounded by Ti-poor mantles were found next to the grains showing the opposite Ti distribution or only slight Ti fluctuations.We propose that diversity of the internal pat- terns in quartz eyes can actually reflect in situ crystallization history, and that prolonged crystallization after magma emplacement under conditions of continuous cooling can account for the observed features of internal textures. For- mation of quartz eyes begins at high temperatures with crystallization of high titanium Quartz 1, which as the melt becomes more and more evolved and cooler, is overgrown by low Ti Quartz 2. Subsequent fluid exsolution brings about dramatic change in the melt composition: OH2, alkalis and other Cl-complexed elements partition into the fluid phase, whereas Ti stays in the melt, contributing to a rapid increase in Ti activity. Separation of the fluid and its further cooling causes disequilibrium in the system, and the Quartz 2 becomes partially resorbed. Exsolution of the fluid gradually builds up the pressure until it exceeds the yield strength of the host rocks and they then fracture. This pressure release most likely triggers crystallization of Quartz 3, which is higher in Ti than Quartz 2 because Ti activity in the melt is higher and pressure of crystallization is lower. As a result of the reaction between the exsolved fluid and quartz a new phase, a so called ‘heavy fluid’ forms. From this phase Quartz 4 crystallizes. This phase has extremely high metal-carrying capacity, and may give a rise to mineralizing fluids. Finally, on the brink of the subsolidus stage, groundmass quartz crystallizes. Prolonged crystalli- zation under conditions of continuous cooling accounts better for the diversity of CL textures than crystallization in different parts of a deep magma chamber. It is also in a better agreement with the existing model for formation of porphyry-style deposits.
ABSTRACT Metasomatism of the lithospheric mantle sometimes produces unusual assemblages containin... more ABSTRACT Metasomatism of the lithospheric mantle sometimes produces unusual assemblages containing native metals and alloys, which provide important insight into metasomatic processes in the mantle. In this study, we describe the metasomatic enrichment of a refractory harzburgite xenolith in Ni, Fe and, to a lesser extent, Cu, Co, As and Sb. The xenolith (XM1/422) derives from the Bultfontein kimberlite (Kimberley, South Africa) and hosts Ni mineralisation that includes native nickel (Ni84.5-98.0), heazlewoodite (Ni3S2) and Ni-rich silicates (e.g. up to 37.5 wt % NiO in olivine, and 22.4 wt % NiO in phlogopite). The presence of several mineral phases enriched in alkali and volatile species (e.g. phlogopite, phosphates, carbonates, chlorides, djerfisherite) indicates that the transition metal cations were likely introduced during metasomatism by alkali-rich C–O–H fluids or alkali-carbonate melts. It is postulated that sulphide breakdown and fluid reaction with refractory mantle rocks contributed to the fluid’s enrichment in Ni and other metallic cations. The Ni-rich assemblages of xenolith XM1/422 show local chemical disequilibrium, and modelling of the Ni diffusion profiles adjacent to olivine-native nickel and olivine-heazlewoodite grain boundaries, suggests a close temporal relationship between Ni-rich metasomatism and subsequent entrainment by the kimberlite magma. However, metal-rich metasomatism has also been observed in other lithospheric mantle domains, including orogenic peridotitic massifs and the suboceanic mantle; regions unaffected by kimberlite magmatsim. As micro-scale occurrences of metallic phases are easily overlooked, it is possible that metal-rich metasomatism is more widespread in the Earth’s mantle than previously recognised.
ABSTRACT Hyperspectral cathodoluminescence (CL) mapping, combined with electron probe microanalys... more ABSTRACT Hyperspectral cathodoluminescence (CL) mapping, combined with electron probe microanalysis (EPMA) and Fourier transform infrared spectroscopy, was used for the reconstruction of crystallization conditions of quartz from porphyry environments. Quartz eyes from the two porphyry deposits Rio Blanco (Chile) and Climax (U.S.A.) were studied. Three peaks are found to be responsible for the total CL emission: 1.93, 2.05, and 2.72 eV. The first two peaks are assigned to O-M (with M being an alkali ion) and oxygen vacancies, respectively. The 2.72 eV peak shows a linear correlation with the Ti concentration determined by EPMA point measurements. In addition, a negative correlation between the 1.93 eV emission and the Al concentration was observed. Quartz grains often form clusters in which adjacent grains show identical CL patterns, indicating that they crystallized attached to each other and were not disturbed later. Quartz cores display sector zoning and enrichment in Li, OH, and sometimes Al, which points to rapid crystallization from an extremely evolved melt. Quartz rims show high Ti, and low Li and OH contents, indicating crystallization from a less evolved melt either at higher temperatures or at higher titanium activities. The Al and Ti distribution patterns are frequently not correlated and both show uneven distribution indicating fast growth from inhomogeneous melts. Only Ti displays sharp transitions and fine oscillatory zoning, which can be explained by the higher mobility of Al in the quartz lattice. The quartz eyes crystallized after magma emplacement under non-equilibrium conditions. It is likely that the crystallization occurred from the melt enriched in Al, Li, and OH and probably other metals and/or volatiles on the brink of fluid exsolution. Subsequent fluid exsolution brought about disequilibrium to the system, resulting in dissolution of quartz and redistribution of elements between the melt and the fluid. The OH, Li, and other alkali metals and volatiles partitioned into the fluid, whereas Ti and Al remained in the melt. Resorption of quartz caused by the fluid exsolution continued until equilibrium was reached again, after which crystallization of quartz rims began from the water-, alkali-, and volatile-poor melt with higher Ti activity. Further accumulation of Al and Ti in the residual melt led to crystallization of extremely Al- and Ti-rich quartz
Uploads
Papers by K. Goemann