Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Kalkunte Srivenugopal

    Blood brain-barrier entry, tumor heterogeneity, need to eliminate the tumorigenic stem cells and inhibit the DNA repair protein MGMT are all essential considerations in glioma treatment. Previously, we showed that alcohol aversion drug... more
    Blood brain-barrier entry, tumor heterogeneity, need to eliminate the tumorigenic stem cells and inhibit the DNA repair protein MGMT are all essential considerations in glioma treatment. Previously, we showed that alcohol aversion drug disulfiram (DSF) shares all these properties [Carcinogenesis 35, 692, 2014; Oncotarget 4,502, 2013]. DSF was shown to inhibit the MGMT activity in the same way as ALDH by conjugating with the active-site cysteine 145 and sensitize brain tumors to alkylating agents. Although DSF exerts significant anticancer effects in vitro, the drug undergoes rapid decomposition and metabolism. To overcome this problem, we engineered DSF nanoparticles by encapsulating the drug in PEG: PLGA polymer by solvent evaporation method. The formulation was optimized for various process formulation variables. The optimized nano-formulation (NP) ranged from 70–80 nm in particle size as confirmed using dynamic light scattering. Transition electron microscopy and scanning electron microscopy revealed their shape and surface. Drug loading, encapsulation efficiency and in vitro release were also. The time course of internalization of particles using a cyanine dye (HITC-1) showed a lysosomal accumulation followed by mitochondria. Live animal imaging after IV injections of HITC-labeled DSF-NPs revealed a selective accumulation in the brain and subcutaneous tumors. Further, the cytotoxicity elicited by DSFNPs against various brain tumor cells was extended and greater than obtained with the free drug. The DSFNPs also induced significant degradation of MGMT in a concentration-dependent manner in glioma cells. ROS induction by the encapsulated drug was confirmed through DCF-DA and DHE staining of live cells; co-staining these cells with the mitochondrial membrane potential markers DiOC6 and DHE confirmed the altered mitochondrial integrity. GSTP1 inhibition and ROS induction by DSFNPs led to an activation of JNK/MAPK pathway, culminating in autophagy and apoptosis as verified by western blotting, FACS and immunofluorescence of appropriate markers.
    Background: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or... more
    Background: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. Results: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT’s exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extende...
    There is a desperate need for novel and efficacious chemotherapeutic strategies for human brain cancers. There are abundant molecular alterations along the p53 and MDM2 pathways in human glioma, which play critical roles in drug... more
    There is a desperate need for novel and efficacious chemotherapeutic strategies for human brain cancers. There are abundant molecular alterations along the p53 and MDM2 pathways in human glioma, which play critical roles in drug resistance. The present study was designed to evaluate the in vitro and in vivo antitumor activity of a novel brain-penetrating small molecule MDM2 degrader, termed SP-141. In a panel of nine human glioblastoma and medulloblastoma cell lines, SP-141, as a single agent, potently killed the brain tumor-derived cell lines with IC50 values ranging from 35.8 to 688.8 nM. Treatment with SP-141 resulted in diminished MDM2 and increased p53 and p21cip1 levels, G2/M cell cycle arrest, and marked apoptosis. In intracranial xenograft models of U87MG glioblastoma (wt p53) and DAOY medulloblastoma (mutant p53) expressing luciferase, treatment with SP-141 caused a significant 4- to 9-fold decrease in tumor growth in the absence of discernible toxicity. Further, combinatio...
    The molecular basis of anticancer and apoptotic effects of R-goniothalamin (GON), a plant secondary metabolite was studied. We show that induction of oxidative stress and reactivation of mutant p53 underlie the strong cytotoxic effects of... more
    The molecular basis of anticancer and apoptotic effects of R-goniothalamin (GON), a plant secondary metabolite was studied. We show that induction of oxidative stress and reactivation of mutant p53 underlie the strong cytotoxic effects of GON against the breast cancer cells. While GON was not toxic to the MCF10a breast epithelial cells, the SKBR3 breast cancer cells harboring an R175H mutant p53 were highly sensitive (IC50 = 7.3 µM). Flow cytometry and other pertinent assays showed that GON induced abundant reactive oxygen species (ROS), glutathione depletion, protein glutathionylation and activation of apoptotic markers. GON was found to conjugate with glutathione both in vitro and in cells and the product was characterized by mass spectrometry. We hypothesized that the redox imbalance induced by GON may affect the structure of the R175H mutant p53 protein, and account for greater cytotoxicity. Using the SKBR3 breast cancer and p53-null H1299 lung cancer cells stably expressing the...
    Human NAD(P)H quinone oxidoreductase-1 (hNQO1) is an important cancer-related biomarker, which shows significant overexpression in malignant cells. Developing an effective method for detecting NQO1 activity with high sensitivity and... more
    Human NAD(P)H quinone oxidoreductase-1 (hNQO1) is an important cancer-related biomarker, which shows significant overexpression in malignant cells. Developing an effective method for detecting NQO1 activity with high sensitivity and selectivity in tumors holds a great potential for cancer diagnosis, treatment, and management. In the present study, we report a new dicyanoisophorone (DCP) based fluorescent probe (NQ-DCP) capable of monitoring hNQO1 activity in vitro and in vivo in both ratiometric and turn-on model. NQ-DCP was prepared by conjugating dicyanoisophorone fluoroprobe with hNQO1 activatable quinone propionic acid (QPA), which remain non-fluorescent until activation by tumor-specific hNQO1. NQ-DCP featured a large Stokes shift (145 nm), excellent biocompatibility, cell permeability, and selectivity towards hNQO1 allowed to differentiate cancer cells from healthy cells. We have successfully employed NQ-DCP to monitor non-invasive endogenous hNQO1 activity in brain tumor cell...
    There is great interest in repurposing disulfiram (DSF), a rapidly metabolizing nontoxic drug, for brain cancers and other cancers. To overcome the instability and low therapeutic efficacy, we engineered passively-targeted... more
    There is great interest in repurposing disulfiram (DSF), a rapidly metabolizing nontoxic drug, for brain cancers and other cancers. To overcome the instability and low therapeutic efficacy, we engineered passively-targeted DSF-nanoparticles (DSFNPs) using biodegradable monomethoxy (polyethylene glycol) d,l-lactic-co-glycolic acid (mPEG-PLGA) matrix. The physicochemical properties, cellular uptake and the blood brain-barrier permeability of DSFNPs were investigated. The DSFNPs were highly stable with a size of ∼70 nm with a >90% entrapment. Injection of the nanoparticles labeled with HITC, a near-infrared dye into normal mice and tumor-bearing nude mice followed by imaging showed a selective accumulation of the formulation within the brain and subcutaneous tumors for >24 h, indicating an increased plasma half-life and entry of DSF into desired sites. The DSFNPs induced a potent and preferential killing of many brain tumor cell lines in cytotoxicity assays. Confocal microscopy s...
    Isocitrate dehydrogenases 1 and 2 (IDH1,2), the key Krebs cycle enzymes that generate NADPH reducing equivalents, undergo heterozygous mutations in >70% of low- to mid-grade gliomas and ~20% of acute myeloid leukemias (AMLs) and gain... more
    Isocitrate dehydrogenases 1 and 2 (IDH1,2), the key Krebs cycle enzymes that generate NADPH reducing equivalents, undergo heterozygous mutations in >70% of low- to mid-grade gliomas and ~20% of acute myeloid leukemias (AMLs) and gain an unusual new activity of reducing the α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2HG) in a NADPH-consuming reaction. The oncometabolite D-2HG, which accumulates >35 mM, is widely accepted to drive a progressive oncogenesis besides exacerbating the already increased oxidative stress in these cancers. More importantly, D-2HG competes with α-KG and inhibits a large number of α-KG-dependent dioxygenases such as TET (Ten-eleven translocation), JmjC domain-containing KDMs (histone lysine demethylases), and the ALKBH DNA repair proteins that ultimately lead to hypermethylation of the CpG islands in the genome. The resulting CpG Island Methylator Phenotype (CIMP) accounts for major gene expression changes including the silencing of the MGMT (⁶-me...
    Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21 in... more
    Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box) motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating ...
    The DNA damage repair enzyme, O-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is... more
    The DNA damage repair enzyme, O-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is frequently methylated. In ER positive breast cancer MGMT is upregulated and modulates ER function. Here, we evaluate MGMT's role in control of other clinically relevant targets involved in cell cycle regulation during breast cancer oncogenesis. We show that O-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes ER positive breast cancer to temozolomide (TMZ). Further, siRNA inhibition of MGMT inhibits CDC2, TOP2A, AURKB, KIF20A, Cyclin B2, A2 and survivin and induces p21. Combination of BG+TMZ decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, Cyclin A2, B2, D1, ERα and survivin. Temozolomide alone inhibits MGMT expression in a dose and time depende...
    Pancreatic cancer is one of the most aggressive and difficult to treat cancers. Experimental and clinical evidence suggests that high basal state autophagy in pancreatic tumors could induce resistance to chemotherapy. Recently, we have... more
    Pancreatic cancer is one of the most aggressive and difficult to treat cancers. Experimental and clinical evidence suggests that high basal state autophagy in pancreatic tumors could induce resistance to chemotherapy. Recently, we have demonstrated that penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis both in vitro and in vivo; however, the mechanism of autophagy induction by penfluridol was not clear. Several studies have established that endoplasmic reticulum stress could lead to autophagy and inhibit tumor progression. In this study, we demonstrated that penfluridol induced endoplasmic reticulum stress in BxPC-3, AsPC-1, and Panc-1 pancreatic cancer cell lines as indicated by upregulation of endoplasmic reticulum stress markers such as binding protein (BIP), C/EBP homologous protein (CHOP) and inositol requiring 1α (IRE1α) after treatment with penfluridol in a concentration-dependent manner. Inhibiting endoplasmic reticulum stress by pretreatment wit...
    Ethacrynic acid (EA), a known inhibitor of the neoplastic marker glutathione S-transferase P1 and other GSTs, exerts a weak antiproliferative activity against human cancer cells. The clinical use of EA (Edecrin) as an anticancer drug is... more
    Ethacrynic acid (EA), a known inhibitor of the neoplastic marker glutathione S-transferase P1 and other GSTs, exerts a weak antiproliferative activity against human cancer cells. The clinical use of EA (Edecrin) as an anticancer drug is limited by its potent loop diuretic activity. In this study, we developed a non-diuretic 2-amino-2-deoxy-d-glucose conjugated EA (EAG) to target tumors cells via the highly expressed glucose transporter 1 (GLUT1). Cell survival assays revealed that EAG had little effect on normal cells, but was cytotoxic 3 to 4.5-fold greater than EA. Mechanistically, the EAG induced selective cell death in cancer cells by inhibiting GSTP1 and generating abundant reactive oxygen species. Furthermore, EAG induced p21(cip1) expression and a G2/M cell cycle block irrespective of the p53 gene status in tumor cells. These data encourage the development of new EA analogs.
    In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the... more
    In the absence of DNA aggregation, spermidine inhibited the relaxation of negatively supercoiled DNA by Escherichia coli topoisomerase I at concentrations of the polyamine normally found intracellularly. Spermidine also curtailed the cleavage of negatively supercoiled ColE1 DNA by the enzyme in the absence of Mg2+. On the contrary, knotting of M13 single-stranded DNA circles catalyzed by topoisomerase I was stimulated by the polyamine. Relaxation of supercoiled DNA by eukaryotic type 1 topoisomerases, such as calf thymus topoisomerase I and wheat germ topoisomerase, was significantly stimulated by spermidine in the same range of concentrations that inhibited the prokaryotic enzyme. In reactions catalyzed by S1 nuclease, the polyamine enhanced the digestion of single-stranded DNA and inhibited the nicking of negatively supercoiled DNA. These results suggest that spermidine modifies the supercoiled duplex substrate in these reactions by modulating the degree of single strandedness.
    Although avidin-mediated intracellular delivery of oligonucleotides or proteins has been shown before, the efficacy studies are lacking. Here, we tested the effectiveness of avidin for delivery of a cytochrome P450 reductase (CPR)... more
    Although avidin-mediated intracellular delivery of oligonucleotides or proteins has been shown before, the efficacy studies are lacking. Here, we tested the effectiveness of avidin for delivery of a cytochrome P450 reductase (CPR) antisense oligo in rat liver epithelial cells. A phosphorodiamidate morpholino oligo (PMO) against CPR was biotinylated using four reagents with short, cleavable, or long linkers, followed by conjugation with avidin. The dose-inhibitory response of the unmodified PMO in the presence of a transfection reagent (Endoporter, EP) and the effectiveness of the EP-assisted and avidin-assisted delivery of biotinylated PMOs were tested by Western blot analysis. Additionally, in a preliminary study, the avidin-biotin PMO with a long linker was also tested in vivo in rats. The biotinylated oligos were at least as effective as the unmodified oligo. Whereas the avidin conjugate of biotinylated PMO with the short linker was ineffective, those with the long linkers showed significant reductions in CPR protein expression. Finally, the in vivo study showed modest, but significant, reductions in CPR activity. In conclusion, these studies show for the first time that avidin-mediated intracellular delivery of biotinylated oligos can effectively knock down target genes in vitro, depending on the length of the linker. Additionally, the avidin-biotin approach may be of potential value for in vivo gene knockdown.
    Piperlongumine (PL), a small molecule alkaloid present in black pepper (Piper longum), has been reported to kill tumor cells irrespective of their p53 gene status, however, the mechanisms involved are unknown. Since p53 is a... more
    Piperlongumine (PL), a small molecule alkaloid present in black pepper (Piper longum), has been reported to kill tumor cells irrespective of their p53 gene status, however, the mechanisms involved are unknown. Since p53 is a redox-sensitive protein, we hypothesized that the redox imbalance induced by PL may affect the structure and/or function of the mutant p53 protein and promote cell death. We used two human colon cancer cell lines, the HT29 and SW620 which harbor the R273H DNA contact abrogatory mutation in p53. PL treatment induced significant ROS production and protein glutathionylation with a concomitant increase in Nrf-2 expression in both cell lines. Surprisingly, immunoprecipitation with wt-p53 specific antibodies (PAb1620) or direct western blotting showed a progressive generation of wild-type-like p53 protein along with a loss of its mutant counterpart in PL-treated HT29 and SW620 cells. Moreover, the EMSA and DNA-affinity blotting revealed a time-dependent restoration of...
    Anomalies in the genes of the cell cycle regulators, p16(INK4) and CDK4 are highly frequent in human gliomas and other cancers, however, the extent to which these defects are involved in regulating the response of tumor cells to DNA... more
    Anomalies in the genes of the cell cycle regulators, p16(INK4) and CDK4 are highly frequent in human gliomas and other cancers, however, the extent to which these defects are involved in regulating the response of tumor cells to DNA damaging agents is not clear. In this study, using three human malignant glioma cell lines, MGR1, MGR3, and U87MG, we examined changes in gene expression of p16 and/or of its specific target CDK4 following damage of the cellular genome by the chemotherapeutic bifunctional alkylating agent, 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). Exposure of the cells to 50 mu M BCNU for 24 h induced a significant level of DNA interstrand cross-links in all cell lines. In MCR1 cells (p16(+), Rb+), over the 24 h period, a steady increase in p16 (mRNA and protein) and CDK4 (protein) was observed. The increase in CDK4 and p16 proteins occurred in parallel, and that the two proteins accumulated in complex with each other, resulting in marked inhibition of CDK4 kinase activity. In MGR3 and U87MG cells, both of which lack functional p16 protein (p16(-), Rb+), BCNU, however increased the CDK4 protein levels. In all three cell lines, despite the differences in p16 gene status, BCNU exposure caused significant blockade of the cells at G(2)/M phase of the cell cycle. The coordinated enhancement of the target (CDK4) and the inhibitor (p16) in cellular response to genomic injury may reflect an attempt of the cells to continue progression through the cell cycle (via CDK4), while triggering the cell cycle arrest (via p16), required for the orderly repair of the damage to the genome.
    We investigated whether the multiple pathophysiological signals generated in a peritonitis septic model alter the mRNA levels of glycolytic and gluconeogenic enzymes, and whether these alterations are associated with glucose... more
    We investigated whether the multiple pathophysiological signals generated in a peritonitis septic model alter the mRNA levels of glycolytic and gluconeogenic enzymes, and whether these alterations are associated with glucose dyshomeostasis. Rats were sham-operated in the control group, and peritonitis sepsis was produced by a 1 cm cecal incision in the septic group. At 2, 4, and 6 hr post-surgery, total cellular RNAs were isolated from livers, and Northern blots performed to measure mRNA levels of aldolase B (ADL), lactate dehydrogenase (LDH), pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (PEPCK), and glucokinase (GK). Hepatic PEPCK enzymatic activity was measured by condensing 14CO2 with phosphoenolpyruvate (PEP) to form malate. Serum glucose concentrations were also measured. We found the following: At 2 hr of peritonitis sepsis, serum glucose concentrations, mRNA levels of all enzymes, and PEPCK enzymatic activity increased over control levels. At 4 hr of peritonitis sepsis, serum glucose concentrations and mRNA levels of GK and PK continued to increase; mRNA levels of all other enzymes, as well as PEPCK enzymatic activity decreased to or below control levels. At 6 hr of peritonitis sepsis, serum glucose concentrations, mRNA levels of all enzymes, and PEPCK enzymatic activity decreased to or below control levels. We concluded that sepsis affects mRNA levels of glycolytic and gluconeogenic enzymes at the transcriptional level, and that these alterations are associated with glucose dyshomeostasis.
    ABSTRACT
    To understand the genomic changes contributing to the various metabolic derangements in sepsis and septic shock, we measured the activities of the following liver enzymes intimately associated with DNA function: (1) DNA topoisomerases I... more
    To understand the genomic changes contributing to the various metabolic derangements in sepsis and septic shock, we measured the activities of the following liver enzymes intimately associated with DNA function: (1) DNA topoisomerases I and II (topo I and topo II) controlling DNA conformation in mammalian nuclei, and (2) O6-methylguanine-DNA-methyltransferase (MT) capable of removing the methyl groups from the O6-position of guanine in DNA. We found that in septic rat livers the specific activities (units/mg protein) of topo II and MT were elevated by 1.4- and 1.6-fold, respectively, over the sham-operated controls (P less than 0.001). There was no significant difference in topo I activity. We believe that peritonitis sepsis alters topo II levels modulating the selective pretranscriptional changes in chromatin and that MT functions as a cellular stress protein.
    O(6)-Methylguanine-DNA-methyltransferase (MGMT) is an antimutagenic DNA repair protein highly expressed in human brain tumors. Because MGMT repairs the mutagenic, carcinogenic and cytotoxic O(6)-alkylguanine adducts, including those... more
    O(6)-Methylguanine-DNA-methyltransferase (MGMT) is an antimutagenic DNA repair protein highly expressed in human brain tumors. Because MGMT repairs the mutagenic, carcinogenic and cytotoxic O(6)-alkylguanine adducts, including those generated by the clinically used anticancer alkylating agents, it has emerged as a central and rational target for overcoming tumor resistance to alkylating agents. Although the pseudosubstrates for MGMT [O(6)-benzylguanine, O(6)-(4-bromothenyl)guanine] have gained attention as powerful and clinically-relevant inhibitors, bone marrow suppression due to excessive alkylation damage has diminished this strategy. Our laboratory has been working on various posttranslational modifications of MGMT that affect its protein stability, DNA repair activity and response to oxidative stress. While these modifications greatly impact the physiological regulation of MGMT, they also highlight the opportunities for inactivating DNA repair and new drug discovery in this spe...
    Survivin, an antiapoptotic gene inhibited by p53, is overexpressed in human cancers and correlates with chemotherapy resistance. Here, we investigated the mutual regulatory mechanism between MGMT (O-methylguanine DNA methyltransferase)... more
    Survivin, an antiapoptotic gene inhibited by p53, is overexpressed in human cancers and correlates with chemotherapy resistance. Here, we investigated the mutual regulatory mechanism between MGMT (O-methylguanine DNA methyltransferase) and survivin. This study used standard techniques for protein and messenger RNA levels, promoter activity, protein-DNA interaction, cell viability, and correlative animal model. O-benzylguanine (BG), a potent inhibitor of MGMT (a DNA repair protein), curtails the expression of survivin in pancreatic cancer. Silencing MGMT by small interfering RNA down-regulates survivin transcription. p53 inhibition enhances MGMT and survivin expressions. When p53 was silenced, BG-induced MGMT inhibition was not associated with the down-regulation of survivin, underscoring the regulatory role of p53 in the MGMT-survivin axis. O-benzylguanine inhibits survivin and PCNA (proliferating cell nuclear antigen) at messenger RNA and protein levels in PANC-1 and L3.6pl cells a...
    We used isogenic human tumor cell lines to investigate the specific and direct effects of wild-type (wt) p53 on the expression of O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that confers tumor resistance to many... more
    We used isogenic human tumor cell lines to investigate the specific and direct effects of wild-type (wt) p53 on the expression of O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that confers tumor resistance to many anticancer alkylating agents. A p53-null, MGMT-proficient lung tumor cell line (H1299) was engineered to express wt p53 in a tetracycline-regulated system. High levels of p53 induction achieved by tetracycline withdrawal were accompanied by G(1) cell cycle arrest without significant apoptosis in this cell line. p53 accumulation resulted in a gradual and dramatic loss of MGMT mRNA, protein, and enzyme activity, whose levels were undetectable by day 3 of induction. The loss of MGMT protein was, however, not due to its degradation because the ubiquitin-promoted in vitro degradation of MGMT, which mediates the cellular disposal of the repair protein, was not altered by p53. Run-on transcription assays revealed a significant reduction in the rate of MGMT...
    The biochemical regulation of human O6-alkylguanine-DNA alkyltransferase (AGT), which determines the susceptibility of normal tissues to methylating carcinogens and resistance of tumor cells to many alkylating agents, is poorly... more
    The biochemical regulation of human O6-alkylguanine-DNA alkyltransferase (AGT), which determines the susceptibility of normal tissues to methylating carcinogens and resistance of tumor cells to many alkylating agents, is poorly understood. We investigated the regulation of AGT by protein phosphorylation in a human medulloblastoma cell line. Incubation of cell extracts with [gamma-32P]ATP resulted in Mg(2+)-dependent phosphorylation of the endogenous AGT. Immunoprecipitation after exposure of the cells to 32P-labeled inorganic phosphate showed that AGT exists as a phosphoprotein under physiological conditions. Western analysis and chemical stability studies showed the AGT protein to be phosphorylated at tyrosine, threonine, and serine residues. Purified protein kinase A (PKA), casein kinase II (CK II), and protein kinase C (PKC) phosphorylated the recombinant AGT protein with a stoichiometry of 0.15, 0.28, and 0.44 (mol phosphate incorporated/mol protein), respectively. Residual phos...
    Structural alterations in the p16INK4 gene were examined in early passage human glioma cell lines and related to the expression of p16 transcripts and protein. Using the Southern blot approach, we observed both homozygous and hemizygous... more
    Structural alterations in the p16INK4 gene were examined in early passage human glioma cell lines and related to the expression of p16 transcripts and protein. Using the Southern blot approach, we observed both homozygous and hemizygous deletions, as well as rearrangements of the p16 and p15 genes in 5 of the 7 cell lines (71%). Two cell lines, MGR3 and HBT28, revealed hemizygous deletion of the p16 and p15 genes combined with indistinguishable rearrangements of the remaining p15-p16 locus that resulted in loss of exon 2 sequences for p15 and p16, but retention of p16 exon 1; neither of these cell lines expressed p16 mRNA. Data for a third cell line, MGR2, indicated a similar, but unique rearrangement involving the p15 and p16 genes. MGR2, which retained a single wild-type p15-p16 locus, showed expression of p16 transcript, but not of p16 protein as indicated by Western blot analysis. All the glioma cell lines expressed similar levels of the retinoblastoma protein and no amplificati...
    An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This... more
    An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
    The participation of a multifunctional enzyme (a single polypeptide with multiple catalytic activities (14)) has been demonstrated in the conversion of agmatine to putrescine in Lathyrus sativus seedlings. This enzyme (putrescine... more
    The participation of a multifunctional enzyme (a single polypeptide with multiple catalytic activities (14)) has been demonstrated in the conversion of agmatine to putrescine in Lathyrus sativus seedlings. This enzyme (putrescine synthase) with inherent activities of agmatine iminohydrolase, putrescine transcarbamylase, ornithine transcarbamylase, and carbamate kinase has been purified to homogeneity and has Mr = 55,000. In the presence of inorganic phosphate, the enzyme catalyzed the stoichiometric conversion of agmatine and ornithine to putrescine and citrulline, respectively. The different activities associated with the enzyme copurified with near constancy in their specific activity. The enzyme catalyzed phosphorolysis and arsenolysis of N-carbamyl putrescine. The multifunctionality of putrescine synthase was also supported by 1) activity staining, 2) intact transfer of the ureido-14C group from labeled NJ-carbamyl putrescine to ornithine to form citrulline, and 3) the affinity ...
    A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups... more
    A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with...
    The ability of aspirin to trigger apoptosis in cancer cells is well known and is consistent with the clinical and epidemiological evidence on its chemopreventive effects in curtailing epithelial cancers, including breast cancer. We... more
    The ability of aspirin to trigger apoptosis in cancer cells is well known and is consistent with the clinical and epidemiological evidence on its chemopreventive effects in curtailing epithelial cancers, including breast cancer. We hypothesized that the anticancer effects of aspirin may involve acetylation of the tumor suppressor protein p53, a known regulator of apoptosis. In the present study, we determined if aspirin at the physiologically achievable concentration of 100 microM acetylates p53 and modulates the expression of p21CIP1, a protein involved in cell cycle arrest, and Bax, a pro-apoptotic protein. Using MDA-MB-231 human breast cancer cells, we demonstrate that aspirin at 100 microM concentration markedly acetylated the p53 protein, which was primarily localized to the nucleus. Aspirin induced p21CIP1 protein levels in a transient fashion in contrast to the sustained induction of Bax. The induction of p21CIP1 protein levels began at 3 h and was maximal at 6-8 h; however, ...
    In the normal adult brain, glucose provides 90% of the energy requirement, as well as substrate for nucleic acid and lipid synthesis. We have previously observed that ethanol impairs hexose uptake by rat astrocytes in culture. In the... more
    In the normal adult brain, glucose provides 90% of the energy requirement, as well as substrate for nucleic acid and lipid synthesis. We have previously observed that ethanol impairs hexose uptake by rat astrocytes in culture. In the present study, male Sprague-Dawley rats, 200-250 g, were fed liquid diet in which 36% of the calories were derived from ethanol (EF) for 4 weeks. Controls were fed ad libitum (AF) or pair-fed (PF) an equicaloric diet without ethanol. Blood glucose levels did not differ between the groups at the time of study. Glucose transport by brain plasma membranes was characterized by cytochalasin B binding and showed a slight increase in transporter number (mean +/- SEM of 4 experiments = 76.4 +/- 2.5 pmoles/mg protein in EF vs. 69.5 +/- 1.0 in PF) with no change in affinity (1.8 +/- 0.1 nM-1 in EF and 1.6 +/- 0.1 in PF). Glucose transporter, GLUT-1, was increased on Western blots. In contrast, Northern analysis of cortical tissue, using a rat brain glucose transp...
    Insulin-like growth factors I and II (IGF-I, IGF-II) and IGF-binding proteins (IGBPs) are important modulators of fetal growth. Fetal growth retardation is a major component of the fetal alcohol syndrome, which is associated with maternal... more
    Insulin-like growth factors I and II (IGF-I, IGF-II) and IGF-binding proteins (IGBPs) are important modulators of fetal growth. Fetal growth retardation is a major component of the fetal alcohol syndrome, which is associated with maternal alcoholism. This study examined the relationship of IGF-system components to growth retardation induced by ethanol in fetuses of rats fed equicaloric liquid diets (AF, ad libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed) during gestation. The gene expression of IGF-I and IGF-II in fetal liver and the concentration of IGFs and IGFBPs in serum and liver were determined. The mean weight of EF fetuses was 13% and 16% less (p < 0.01) than that of PF and AF offspring, respectively. The serum concentration of IGF-I was decreased (p < 0.05) by 17% and 22% in EF as compared with PF and AF fetuses. Fetal body weight showed positive correlations with fetal serum IGF-I IGF-II (r = 0.566, p < 0.01, and r = 0.412, p < 0.05, respectively) ...
    Angiotensin II is well implicated in neointimal proliferation and the resulting restenosis, however, the mechanisms involved remain unclear. The type 2 angiotensin II (AT2) receptor, largely unexpressed in the adult vasculature, however,... more
    Angiotensin II is well implicated in neointimal proliferation and the resulting restenosis, however, the mechanisms involved remain unclear. The type 2 angiotensin II (AT2) receptor, largely unexpressed in the adult vasculature, however, appears at significant levels after vascular injury. To investigate the specific contribution of AT2 receptor and the interplay of the angiotensin system to neointima, we engineered rat vascular smooth muscle cells (VSMCs) to express the AT2 receptor in a tetracycline-regulated system. Several VSMC clones resistant to both hygromycin and G418 were selected, many of which showed high, but regulatable levels of AT2R expression within 48 h of doxycycline (Dox) exposure. In untransfected VSMCs and stable transfectants with no AT2R induction, Ang II significantly increased the expression of matrix metalloproteinase 2 (MMP-2), which is linked to neointimal growth. However, induction of AT2R by Dox addition markedly decreased MMP-2 levels (P<0.01) and t...
    The human P-glycoprotein (Pgp) is a drug-efflux pump responsible for innate or acquired multidrug resistance in many cancers. Pgp contains a unique approximately 75 amino acid long linker region in its middle, which is critically... more
    The human P-glycoprotein (Pgp) is a drug-efflux pump responsible for innate or acquired multidrug resistance in many cancers. Pgp contains a unique approximately 75 amino acid long linker region in its middle, which is critically important for its drug transport and ATPase functions. To identify cellular proteins that bind to this linker region and modulate Pgp function, a yeast two-hybrid analysis was carried out. This procedure identified RNF2 (RING finger protein 2), an E3 ubiquitin ligase, as a prominent Pgp-interacting protein. Co-expression of RNF2 with Pgp in Sf9 insect cells resulted in decreased ATPase activity and proteolytic protection of the transporter protein. Immunoprecipitation experiments confirmed the physical interaction between these two proteins. Confocal microscopy showed the presence of RNF2 in the cytoplasm of the Pgp-negative, drug-sensitive MCF-7 breast cancer cells. However, it was undetectable in the Pgp-positive and drug-resistant MCF-7 cells. We suggest...
    Anomalies in the genes of the cell cycle regulators, p16(INK4) and CDK4 are highly frequent in human gliomas and other cancers, however, the extent to which these defects are involved in regulating the response of tumor cells to DNA... more
    Anomalies in the genes of the cell cycle regulators, p16(INK4) and CDK4 are highly frequent in human gliomas and other cancers, however, the extent to which these defects are involved in regulating the response of tumor cells to DNA damaging agents is not clear. In this study, using three human malignant glioma cell lines, MGR1, MGR3, and U87MG, we examined changes in gene expression of p16 and/or of its specific target CDK4 following damage of the cellular genome by the chemotherapeutic bifunctional alkylating agent, 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). Exposure of the cells to 50 mu M BCNU for 24 h induced a significant level of DNA interstrand cross-links in all cell lines. In MCR1 cells (p16(+), Rb+), over the 24 h period, a steady increase in p16 (mRNA and protein) and CDK4 (protein) was observed. The increase in CDK4 and p16 proteins occurred in parallel, and that the two proteins accumulated in complex with each other, resulting in marked inhibition of CDK4 kinase activity. In MGR3 and U87MG cells, both of which lack functional p16 protein (p16(-), Rb+), BCNU, however increased the CDK4 protein levels. In all three cell lines, despite the differences in p16 gene status, BCNU exposure caused significant blockade of the cells at G(2)/M phase of the cell cycle. The coordinated enhancement of the target (CDK4) and the inhibitor (p16) in cellular response to genomic injury may reflect an attempt of the cells to continue progression through the cell cycle (via CDK4), while triggering the cell cycle arrest (via p16), required for the orderly repair of the damage to the genome.
    To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are... more
    To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coor...

    And 39 more