I am a biologist interested in activity of species: what is our influence on how species organize their activity? And how do animals change the daily or yearly timing of their behaviour as a result of our presence? Do changing environments and ecosystems put selective pressure on species, and can we show it?My drive is to visualize the invisible in ecosystems: hidden effects, latent processes, secretive behaviour by inconspicuous species.
Artificial light at night has shown a remarkable increase over the past decades. Effects are repo... more Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but wer...
Proceedings of the National Academy of Sciences, 2015
Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are... more Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.
Recent studies have shown that animals are affected by night-time light exposure. Light is a cont... more Recent studies have shown that animals are affected by night-time light exposure. Light is a continuous variable, but our knowledge on how individuals react to different light intensities during the night is limited. We therefore determined the relationship between night light intensity and the behaviour and physiology of great tits (Parus major). We measured daily activity patterns and melatonin levels in 35 males exposed to five different light intensities and found strong, dose-dependent effects. Activity onset was increasingly advanced, and activity offset delayed with higher light intensities. Furthermore, night-time activity increased and melatonin levels measured at midnight decreased with higher intensities. In this experimental study, we demonstrate for the first time dose-dependent effects of artificial light at night on birds' daily activity patterns and melatonin levels. Our results imply that these effects are not limited to a certain threshold, but emerge even when...
Artificial light may have severe ecological consequences but there is limited experimental work t... more Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.
De Bechsteins vleermuis en de franjestaart op en rond het landgoed Eerde Kamiel Spoelstra Theo Do... more De Bechsteins vleermuis en de franjestaart op en rond het landgoed Eerde Kamiel Spoelstra Theo Douma Daniel Tuitert René Janssen Albert Douma II III De Bechsteins vleermuis (Myotis bechsteinii) en de franjestaart (Myotis nattereri) op en rond het landgoed Eerde
Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles ... more Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, Jan 5, 2015
The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Mos... more The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of ...
Canadian Journal of Zoology-revue Canadienne De Zoologie, 1999
... We predicted that activity of foraging bats would be maxi-mal where insect abundance is maxim... more ... We predicted that activity of foraging bats would be maxi-mal where insect abundance is maximal and relative wind speed is minimal. ... Many thanks are also extended to M. Kozakiewicz, R. Halba (Warsaw University), Elzbièta ...
The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect... more The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle
Proceedings of the Royal Society B: Biological Sciences, 2013
Circadian clocks are centrally involved in the regulation of daily behavioural and physiological ... more Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24 h day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We found substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24 h activity cycles, were continuously active (arrhythmic) or showed 'free-running' activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel timekeeping under continuous daylight emphasizes the plasticity of the circadian system, and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions.
Artificial light may have severe ecological consequences but there is limited experimental work t... more Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.
Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the... more Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the wild type circadian system. DiVerences between these mutant strains have inspired the hypothesis that the duality of circadian genes (two mPer and two mCry genes involved) is related to the existence of two components in the circadian oscillator (Daan et al., J Biol Rhythms 16:105-116, 2001). We tested the predictions from this theory that the circadian period ( ) lengthens under constant illumination (LL) in mCry1 and mPer1 mutant mice, while it shortens in mCry2 and mPer2 mutants. mCry1 ¡/¡ and mCry2 ¡/¡ knockout mice both consistently increased with increasing light intensity, as did wild type mice. With increasing illumination, rhythmicity is reduced in mCry1, mCry2 and mPer1, but not in mPer2 deWcient mice. Results for mPer mutant mice are in agreement with data reported on these strains earlier by Steinlechner et al. (J Biol Rhythms 17:202-209, 2002), and also with the predictions from the model. The increase in cycle length of the circadian system by light in the mCry2 deWcient mice violates the predictions. The model is thereby rejected: the mCry genes do not play a diVerential role, although the opposite responses of mPer mutants to light remain consistent with a functional Evening-Morning diVerentiation.
Daily patterns of animal behavior are potentially of vast functional importance. Fitness benefits... more Daily patterns of animal behavior are potentially of vast functional importance. Fitness benefits have been identified in nature by the association between individual timing and survival or by the fate of individuals after experimental deletion of their circadian pacemaker. The recent advances in unraveling the molecular basis of circadian timing enable new approaches to natural selection on timing. The investigators report on the effect and fate of the mutant Per2(Brdm1) allele in 4 replicate populations of house mice in a seminatural outside environment over 2 years. This allele is known to compromise circadian organization and entrainment and to cause multiple physiological disturbances. Mice (N=250) bred from Per2(Brdm1) heterozygotes were implanted subcutaneously with transponders and released in approximately Mendelian ratios in four 400 m(2) pens. An electronic system stored the times of all visits to feeders of each individual. The study first demonstrates that mice are not explicitly nocturnal in this natural environment. Feeding activity was predominantly and sometimes exclusively diurnal and spread nearly equally over day and night under the protective snow cover in winter. The effect of Per2(Brdm1) on activity timing is negligible compared to seasonal changes in all genotypes. Second, the Per2(Brdm1) allele did not have persistent negative effects on fitness. In the first year, the allele gradually became less frequent by reducing survival. New cohorts captured had the same Per2(Brdm1) frequency as the survivors from previous cohorts, consistent with an absence of an effect on reproduction. In the second year, the allele recovered to about its initial frequency (0.54). These changes in selective advantage were primarily due to female mice, as females lived longer and the sex ratio dropped to about 25% males in the population. While it is unknown which selective advantage led to the recovery, the results caution against inferences from laboratory experiments on fitness consequences in the natural environment. It also demonstrates that the activity of mice, while strictly nocturnal in the laboratory, may be partially or completely diurnal in the field. The new method allows assessment of natural selection on specific alleles on a day-today basis.
Entrainment may involve responses to dawn, to dusk, and to the light in between these transitions... more Entrainment may involve responses to dawn, to dusk, and to the light in between these transitions. Previous studies showed that the circadian system responds to only 2 light pulses, one at the beginning and one at the end of the day, in a similar way as to a full photoperiod, as long as the photoperiod is less than approximately 1/2
Artificial light at night has shown a remarkable increase over the past decades. Effects are repo... more Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but wer...
Proceedings of the National Academy of Sciences, 2015
Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are... more Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.
Recent studies have shown that animals are affected by night-time light exposure. Light is a cont... more Recent studies have shown that animals are affected by night-time light exposure. Light is a continuous variable, but our knowledge on how individuals react to different light intensities during the night is limited. We therefore determined the relationship between night light intensity and the behaviour and physiology of great tits (Parus major). We measured daily activity patterns and melatonin levels in 35 males exposed to five different light intensities and found strong, dose-dependent effects. Activity onset was increasingly advanced, and activity offset delayed with higher light intensities. Furthermore, night-time activity increased and melatonin levels measured at midnight decreased with higher intensities. In this experimental study, we demonstrate for the first time dose-dependent effects of artificial light at night on birds' daily activity patterns and melatonin levels. Our results imply that these effects are not limited to a certain threshold, but emerge even when...
Artificial light may have severe ecological consequences but there is limited experimental work t... more Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.
De Bechsteins vleermuis en de franjestaart op en rond het landgoed Eerde Kamiel Spoelstra Theo Do... more De Bechsteins vleermuis en de franjestaart op en rond het landgoed Eerde Kamiel Spoelstra Theo Douma Daniel Tuitert René Janssen Albert Douma II III De Bechsteins vleermuis (Myotis bechsteinii) en de franjestaart (Myotis nattereri) op en rond het landgoed Eerde
Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles ... more Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, Jan 5, 2015
The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Mos... more The effects of artificial night lighting on animal behaviour and fitness are largely unknown. Most studies report short-term consequences in locations that are also exposed to other anthropogenic disturbance. We know little about how the effects of nocturnal illumination vary with different light colour compositions. This is increasingly relevant as the use of LED lights becomes more common, and LED light colour composition can be easily adjusted. We experimentally illuminated previously dark natural habitat with white, green and red light, and measured the effects on life-history decisions and fitness in two free-living songbird species, the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) in two consecutive years. In 2013, but not in 2014, we found an effect of light treatment on lay date, and of the interaction of treatment and distance to the nearest lamp post on chick mass in great tits but not in pied flycatchers. We did not find an effect in either species of ...
Canadian Journal of Zoology-revue Canadienne De Zoologie, 1999
... We predicted that activity of foraging bats would be maxi-mal where insect abundance is maxim... more ... We predicted that activity of foraging bats would be maxi-mal where insect abundance is maximal and relative wind speed is minimal. ... Many thanks are also extended to M. Kozakiewicz, R. Halba (Warsaw University), Elzbièta ...
The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect... more The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle
Proceedings of the Royal Society B: Biological Sciences, 2013
Circadian clocks are centrally involved in the regulation of daily behavioural and physiological ... more Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24 h day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We found substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24 h activity cycles, were continuously active (arrhythmic) or showed 'free-running' activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel timekeeping under continuous daylight emphasizes the plasticity of the circadian system, and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions.
Artificial light may have severe ecological consequences but there is limited experimental work t... more Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.
Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the... more Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the wild type circadian system. DiVerences between these mutant strains have inspired the hypothesis that the duality of circadian genes (two mPer and two mCry genes involved) is related to the existence of two components in the circadian oscillator (Daan et al., J Biol Rhythms 16:105-116, 2001). We tested the predictions from this theory that the circadian period ( ) lengthens under constant illumination (LL) in mCry1 and mPer1 mutant mice, while it shortens in mCry2 and mPer2 mutants. mCry1 ¡/¡ and mCry2 ¡/¡ knockout mice both consistently increased with increasing light intensity, as did wild type mice. With increasing illumination, rhythmicity is reduced in mCry1, mCry2 and mPer1, but not in mPer2 deWcient mice. Results for mPer mutant mice are in agreement with data reported on these strains earlier by Steinlechner et al. (J Biol Rhythms 17:202-209, 2002), and also with the predictions from the model. The increase in cycle length of the circadian system by light in the mCry2 deWcient mice violates the predictions. The model is thereby rejected: the mCry genes do not play a diVerential role, although the opposite responses of mPer mutants to light remain consistent with a functional Evening-Morning diVerentiation.
Daily patterns of animal behavior are potentially of vast functional importance. Fitness benefits... more Daily patterns of animal behavior are potentially of vast functional importance. Fitness benefits have been identified in nature by the association between individual timing and survival or by the fate of individuals after experimental deletion of their circadian pacemaker. The recent advances in unraveling the molecular basis of circadian timing enable new approaches to natural selection on timing. The investigators report on the effect and fate of the mutant Per2(Brdm1) allele in 4 replicate populations of house mice in a seminatural outside environment over 2 years. This allele is known to compromise circadian organization and entrainment and to cause multiple physiological disturbances. Mice (N=250) bred from Per2(Brdm1) heterozygotes were implanted subcutaneously with transponders and released in approximately Mendelian ratios in four 400 m(2) pens. An electronic system stored the times of all visits to feeders of each individual. The study first demonstrates that mice are not explicitly nocturnal in this natural environment. Feeding activity was predominantly and sometimes exclusively diurnal and spread nearly equally over day and night under the protective snow cover in winter. The effect of Per2(Brdm1) on activity timing is negligible compared to seasonal changes in all genotypes. Second, the Per2(Brdm1) allele did not have persistent negative effects on fitness. In the first year, the allele gradually became less frequent by reducing survival. New cohorts captured had the same Per2(Brdm1) frequency as the survivors from previous cohorts, consistent with an absence of an effect on reproduction. In the second year, the allele recovered to about its initial frequency (0.54). These changes in selective advantage were primarily due to female mice, as females lived longer and the sex ratio dropped to about 25% males in the population. While it is unknown which selective advantage led to the recovery, the results caution against inferences from laboratory experiments on fitness consequences in the natural environment. It also demonstrates that the activity of mice, while strictly nocturnal in the laboratory, may be partially or completely diurnal in the field. The new method allows assessment of natural selection on specific alleles on a day-today basis.
Entrainment may involve responses to dawn, to dusk, and to the light in between these transitions... more Entrainment may involve responses to dawn, to dusk, and to the light in between these transitions. Previous studies showed that the circadian system responds to only 2 light pulses, one at the beginning and one at the end of the day, in a similar way as to a full photoperiod, as long as the photoperiod is less than approximately 1/2
Uploads
Papers by Kamiel Spoelstra