Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS ... more Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS development. Here we identified miRNA-153 (miR-153) as a modulator of the temporal regulation of NSPC differentiation. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro and in the developing cortex. The transcription factors nuclear factor I (NFI) A and B, essential regulators of the initiation of gliogenesis, were found to be targets of miR-153. Inhibition of miR-153 in early neurogenic NSPCs induced precocious gliogenesis, whereas NFIA/B overexpression rescued the anti-gliogenic phenotypes induced by miR-153 OE. Our results indicate that miR-mediated fine control of NFIA/B expression is important in the molecular networks that regulate the acquisition of gliogenic competence by NSPCs in the developing CNS.
The Nuclear factor I (NFI) family of transcription factors regulates proliferation and differenti... more The Nuclear factor I (NFI) family of transcription factors regulates proliferation and differentiation throughout the developing central nervous system. In the developing telencephalon of humans and mice, reduced Nfi expression is associated with agenesis of the corpus callosum and other neurodevelopmental defects. Currently, little is known about how Nfi expression is regulated during early telencephalic development. PAX6, a transcription factor important for telencephalic development, has been proposed as an upstream regulator of Nfi expression in the neocortex. Here we demonstrate that, in the developing neocortex of mice, NFIA and NFIB are endogenously expressed in gradients with high caudo-medial to low rostro-lateral expression and are most highly expressed in the cortical plate. We found that this expression pattern deviates from that of PAX6, suggesting that PAX6 does not drive Nfi expression. This is supported by in vitro reporter assays showing that PAX6 over-expression do...
Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which hav... more Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.
The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptib... more The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptible to structural defects during development, which often result in significant neuropsychological dysfunction. To date, such individuals have been studied primarily with regards to the integrity of the callosal tract at the midline. However, the mechanisms regulating the contralateral targeting of the corpus callosum, after midline crossing has occurred, are less well understood. Recent evidence suggests that defects in contralateral targeting can occur in isolation from midline-tract malformations, and may have significant functional implications. We propose that contralateral targeting is a crucially important and relatively under-investigated event in callosal development, and that defects in this process may constitute an undiagnosed phenotype in several neurological disorders.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997
Projection neurons throughout the mature mammalian neocortex extend efferent axons either through... more Projection neurons throughout the mature mammalian neocortex extend efferent axons either through the ventrolaterally positioned internal capsule to subcortical targets or through the dorsally located midline corpus callosum to the contralateral cortex. In rats, the internal capsule is pioneered on E14, but the corpus callosum is not pioneered until E17, even though these two types of projection neurons are generated at the same time. Here we use axonal markers to demonstrate that early cortical axon growth is directed toward the nascent internal capsule, which could account for the timing difference in the development of the two efferent pathways. This directed axon growth may be due to a chemoattractant and/or a chemorepellent secreted by intermediate targets of cortical efferent axons, the nascent internal capsule, or the medial wall of the dorsal telencephalon (MDT), respectively. To test for these soluble activities, explants of E15 rat neocortex and intermediate targets were c...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003
Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et... more Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-)/- mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-)/- mice. NFI-A protein is expressed in all three midline populations. In Nfia(-)/-, mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium grise...
Current Topics in Developmental Biology, Vol 69, 2005
The human brain assembles an incredible network of over a billion neurons. Understanding how thes... more The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2006
Diffusion tensor magnetic resonance imaging (DTI) was used to study mouse brain development from ... more Diffusion tensor magnetic resonance imaging (DTI) was used to study mouse brain development from early embryonic stage to adult. DTI provides necessary resolution and superb white matter and gray matter contrast in embryonic and neonatal brains for characterization of morphological changes during mouse brain development. A database and a digital atlas of developing mouse brains based on our DTI results are being constructed. To characterize the spatial and temporal patterns of mouse brain development, we applied landmark based computational techniques to analyze the database.
The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major... more The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major site for adult neurogenesis. Critical to these functions is the proper organization of the hippocampus during development. Radial glia are known to regulate hippocampal formation, but their precise function in this process is yet to be defined. We find that in Nuclear Factor I b (Nfib)-deficient mice, a subpopulation of glia from the ammonic neuroepithelium of the hippocampus fail to develop. This results in severe morphological defects, including a failure of the hippocampal fissure, and subsequently the dentate gyrus, to form. As in wild-type mice, immature nestin-positive glia, which encompass all types of radial glia, populate the hippocampus in Nfib-deficient mice at embryonic day 15. However, these fail to mature into GLAST- and GFAP-positive glia, and the supragranular glial bundle is absent. In contrast, the fimbrial glial bundle forms, but alone is insufficient for proper hippocampal morphogenesis. Dentate granule neurons are present in the mutant hippocampus but their migration is aberrant, likely resulting from the lack of the complete radial glial scaffold usually provided by both glial bundles. These data demonstrate a role for Nfib in hippocampal fissure and dentate gyrus formation, and that distinct glial bundles are critical for correct hippocampal morphogenesis.
Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechan... more Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our results indicate that in addition to regulating the development of midline glial populations, Nfib also regulates the expression of neuropilin 1 within the cingulate cortex. Collectively, these data indicate that defects in midline glia and cingulate cortex neurons are associated with the callosal dysgenesis seen in Nfib-deficient mice, and provide insight into how the development of these cellular populations is controlled at a molecular level.
Three members of the Nuclear Factor I (Nfi) gene family of transcription factors; Nfia, Nfib, and... more Three members of the Nuclear Factor I (Nfi) gene family of transcription factors; Nfia, Nfib, and Nfix are highly expressed in the developing mouse brain. Nfia and Nfib knockout mice display profound defects in the development of midline glial populations and the development of forebrain commissures (das Neves et al. [1999] Proc Natl Acad Sci U S A 96:11946-11951; Shu et al. [2003] J Neurosci 23:203-212; Steele-Perkins et al. [2005] Mol Cell Biol 25:685-698). These findings suggest that Nfi genes may regulate the substrate over which the commissural axons grow to reach targets in the contralateral hemisphere. However, these genes are also expressed in the cerebral cortex and, thus, it is important to assess whether this expression correlates with a cell-autonomous role in cortical development. Here we detail the protein expression of NFIA and NFIB during embryonic and postnatal mouse forebrain development. We find that both NFIA and NFIB are expressed in the deep cortical layers and subplate prenatally and display dynamic expression patterns postnatally. Both genes are also highly expressed in the developing hippocampus and in the diencephalon. We also find that principally neither NFIA nor NFIB are expressed in callosally projecting neurons postnatally, emphasizing the role for midline glial cell populations in commissure formation. However, a large proportion of laterally projecting neurons express both NFIA and NFIB, indicating a possible cell-autonomous role for these transcription factors in corticospinal neuron development. Collectively, these data suggest that, in addition to regulating the formation of axon guidance substrates, these genes also have cell-autonomous roles in cortical development.
Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct familie... more Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct families, including secreted semaphorins (Sema) and vascular endothelial growth factors (VEGF). We generated npn-1 knockin mice, which express an altered ligand binding site variant of Npn-1, and npn-1 conditional null mice to establish the cell-type- and ligand specificity of Npn-1 function in the developing cardiovascular and nervous systems. Our results show that VEGF-Npn-1 signaling in endothelial cells is required for angiogenesis. In striking contrast, Sema-Npn-1 signaling is not essential for general vascular development but is required for axonal pathfinding by several populations of neurons in the CNS and PNS. Remarkably, both Sema-Npn-1 signaling and VEGF-Npn-1 signaling are critical for heart development. Therefore, Npn-1 is a multifunctional receptor that mediates the activities of structurally distinct ligands during development of the heart, vasculature, and nervous system.
There is converging preclinical and clinical evidence to suggest that the extracellular signal-re... more There is converging preclinical and clinical evidence to suggest that the extracellular signal-regulated kinase (ERK) signaling pathway may be dysregulated in autism spectrum disorders. We evaluated Mapk/Erk1/2, cellular proliferation and apoptosis in BTBR mice, as a preclinical model of Autism. We had previously generated 410 F2 mice from the cross of BTBR with B6. At that time, six different social behaviors in all F2 mice were evaluated and scored. In this study, eight mice at each extreme of the social behavioral spectrum were selected and the expression and activity levels of Mapk/Erk in the prefrontal cortex and cerebellum of these mice were compared. Finally, we compared the Mapk/Erk signaling pathway in brain and lymphocytes of the same mice, testing for correlation in the degree of kinase activation across these separate tissues. Levels of phosphorylated Erk (p-Erk) were significantly increased in the brains of BTBR versus control mice. We also observed a significant associ...
Background: Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorder... more Background: Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. Results: In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. Conclusions: We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder. Keywords: Autism spectrum disorders (ASD), BTBR mice, Agenesis of the corpus callosum, Cortical area patterning, Diffusion imaging
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003
Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et... more Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-)/- mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-)/- mice. NFI-A protein is expressed in all three midline populations. In Nfia(-)/-, mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium grise...
Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS ... more Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS development. Here we identified miRNA-153 (miR-153) as a modulator of the temporal regulation of NSPC differentiation. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro and in the developing cortex. The transcription factors nuclear factor I (NFI) A and B, essential regulators of the initiation of gliogenesis, were found to be targets of miR-153. Inhibition of miR-153 in early neurogenic NSPCs induced precocious gliogenesis, whereas NFIA/B overexpression rescued the anti-gliogenic phenotypes induced by miR-153 OE. Our results indicate that miR-mediated fine control of NFIA/B expression is important in the molecular networks that regulate the acquisition of gliogenic competence by NSPCs in the developing CNS.
The Nuclear factor I (NFI) family of transcription factors regulates proliferation and differenti... more The Nuclear factor I (NFI) family of transcription factors regulates proliferation and differentiation throughout the developing central nervous system. In the developing telencephalon of humans and mice, reduced Nfi expression is associated with agenesis of the corpus callosum and other neurodevelopmental defects. Currently, little is known about how Nfi expression is regulated during early telencephalic development. PAX6, a transcription factor important for telencephalic development, has been proposed as an upstream regulator of Nfi expression in the neocortex. Here we demonstrate that, in the developing neocortex of mice, NFIA and NFIB are endogenously expressed in gradients with high caudo-medial to low rostro-lateral expression and are most highly expressed in the cortical plate. We found that this expression pattern deviates from that of PAX6, suggesting that PAX6 does not drive Nfi expression. This is supported by in vitro reporter assays showing that PAX6 over-expression do...
Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which hav... more Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.
The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptib... more The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptible to structural defects during development, which often result in significant neuropsychological dysfunction. To date, such individuals have been studied primarily with regards to the integrity of the callosal tract at the midline. However, the mechanisms regulating the contralateral targeting of the corpus callosum, after midline crossing has occurred, are less well understood. Recent evidence suggests that defects in contralateral targeting can occur in isolation from midline-tract malformations, and may have significant functional implications. We propose that contralateral targeting is a crucially important and relatively under-investigated event in callosal development, and that defects in this process may constitute an undiagnosed phenotype in several neurological disorders.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997
Projection neurons throughout the mature mammalian neocortex extend efferent axons either through... more Projection neurons throughout the mature mammalian neocortex extend efferent axons either through the ventrolaterally positioned internal capsule to subcortical targets or through the dorsally located midline corpus callosum to the contralateral cortex. In rats, the internal capsule is pioneered on E14, but the corpus callosum is not pioneered until E17, even though these two types of projection neurons are generated at the same time. Here we use axonal markers to demonstrate that early cortical axon growth is directed toward the nascent internal capsule, which could account for the timing difference in the development of the two efferent pathways. This directed axon growth may be due to a chemoattractant and/or a chemorepellent secreted by intermediate targets of cortical efferent axons, the nascent internal capsule, or the medial wall of the dorsal telencephalon (MDT), respectively. To test for these soluble activities, explants of E15 rat neocortex and intermediate targets were c...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003
Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et... more Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-)/- mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-)/- mice. NFI-A protein is expressed in all three midline populations. In Nfia(-)/-, mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium grise...
Current Topics in Developmental Biology, Vol 69, 2005
The human brain assembles an incredible network of over a billion neurons. Understanding how thes... more The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2006
Diffusion tensor magnetic resonance imaging (DTI) was used to study mouse brain development from ... more Diffusion tensor magnetic resonance imaging (DTI) was used to study mouse brain development from early embryonic stage to adult. DTI provides necessary resolution and superb white matter and gray matter contrast in embryonic and neonatal brains for characterization of morphological changes during mouse brain development. A database and a digital atlas of developing mouse brains based on our DTI results are being constructed. To characterize the spatial and temporal patterns of mouse brain development, we applied landmark based computational techniques to analyze the database.
The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major... more The hippocampus plays an integral role in spatial navigation, learning and memory, and is a major site for adult neurogenesis. Critical to these functions is the proper organization of the hippocampus during development. Radial glia are known to regulate hippocampal formation, but their precise function in this process is yet to be defined. We find that in Nuclear Factor I b (Nfib)-deficient mice, a subpopulation of glia from the ammonic neuroepithelium of the hippocampus fail to develop. This results in severe morphological defects, including a failure of the hippocampal fissure, and subsequently the dentate gyrus, to form. As in wild-type mice, immature nestin-positive glia, which encompass all types of radial glia, populate the hippocampus in Nfib-deficient mice at embryonic day 15. However, these fail to mature into GLAST- and GFAP-positive glia, and the supragranular glial bundle is absent. In contrast, the fimbrial glial bundle forms, but alone is insufficient for proper hippocampal morphogenesis. Dentate granule neurons are present in the mutant hippocampus but their migration is aberrant, likely resulting from the lack of the complete radial glial scaffold usually provided by both glial bundles. These data demonstrate a role for Nfib in hippocampal fissure and dentate gyrus formation, and that distinct glial bundles are critical for correct hippocampal morphogenesis.
Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechan... more Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our results indicate that in addition to regulating the development of midline glial populations, Nfib also regulates the expression of neuropilin 1 within the cingulate cortex. Collectively, these data indicate that defects in midline glia and cingulate cortex neurons are associated with the callosal dysgenesis seen in Nfib-deficient mice, and provide insight into how the development of these cellular populations is controlled at a molecular level.
Three members of the Nuclear Factor I (Nfi) gene family of transcription factors; Nfia, Nfib, and... more Three members of the Nuclear Factor I (Nfi) gene family of transcription factors; Nfia, Nfib, and Nfix are highly expressed in the developing mouse brain. Nfia and Nfib knockout mice display profound defects in the development of midline glial populations and the development of forebrain commissures (das Neves et al. [1999] Proc Natl Acad Sci U S A 96:11946-11951; Shu et al. [2003] J Neurosci 23:203-212; Steele-Perkins et al. [2005] Mol Cell Biol 25:685-698). These findings suggest that Nfi genes may regulate the substrate over which the commissural axons grow to reach targets in the contralateral hemisphere. However, these genes are also expressed in the cerebral cortex and, thus, it is important to assess whether this expression correlates with a cell-autonomous role in cortical development. Here we detail the protein expression of NFIA and NFIB during embryonic and postnatal mouse forebrain development. We find that both NFIA and NFIB are expressed in the deep cortical layers and subplate prenatally and display dynamic expression patterns postnatally. Both genes are also highly expressed in the developing hippocampus and in the diencephalon. We also find that principally neither NFIA nor NFIB are expressed in callosally projecting neurons postnatally, emphasizing the role for midline glial cell populations in commissure formation. However, a large proportion of laterally projecting neurons express both NFIA and NFIB, indicating a possible cell-autonomous role for these transcription factors in corticospinal neuron development. Collectively, these data suggest that, in addition to regulating the formation of axon guidance substrates, these genes also have cell-autonomous roles in cortical development.
Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct familie... more Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct families, including secreted semaphorins (Sema) and vascular endothelial growth factors (VEGF). We generated npn-1 knockin mice, which express an altered ligand binding site variant of Npn-1, and npn-1 conditional null mice to establish the cell-type- and ligand specificity of Npn-1 function in the developing cardiovascular and nervous systems. Our results show that VEGF-Npn-1 signaling in endothelial cells is required for angiogenesis. In striking contrast, Sema-Npn-1 signaling is not essential for general vascular development but is required for axonal pathfinding by several populations of neurons in the CNS and PNS. Remarkably, both Sema-Npn-1 signaling and VEGF-Npn-1 signaling are critical for heart development. Therefore, Npn-1 is a multifunctional receptor that mediates the activities of structurally distinct ligands during development of the heart, vasculature, and nervous system.
There is converging preclinical and clinical evidence to suggest that the extracellular signal-re... more There is converging preclinical and clinical evidence to suggest that the extracellular signal-regulated kinase (ERK) signaling pathway may be dysregulated in autism spectrum disorders. We evaluated Mapk/Erk1/2, cellular proliferation and apoptosis in BTBR mice, as a preclinical model of Autism. We had previously generated 410 F2 mice from the cross of BTBR with B6. At that time, six different social behaviors in all F2 mice were evaluated and scored. In this study, eight mice at each extreme of the social behavioral spectrum were selected and the expression and activity levels of Mapk/Erk in the prefrontal cortex and cerebellum of these mice were compared. Finally, we compared the Mapk/Erk signaling pathway in brain and lymphocytes of the same mice, testing for correlation in the degree of kinase activation across these separate tissues. Levels of phosphorylated Erk (p-Erk) were significantly increased in the brains of BTBR versus control mice. We also observed a significant associ...
Background: Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorder... more Background: Autism spectrum disorders (ASD) are a group of poorly understood behavioural disorders, which have increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR) strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor functions in these mice that may also contribute to their behavioural phenotype. Results: In this study, we performed diffusion tensor imaging and tractography, together with histological analyses to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered in BTBR mice between cortical areas and throughout development. Conclusions: We demonstrate that interhemispheric connectivity and cortical area formation are altered in an age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder. Keywords: Autism spectrum disorders (ASD), BTBR mice, Agenesis of the corpus callosum, Cortical area patterning, Diffusion imaging
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003
Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et... more Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-)/- mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-)/- mice. NFI-A protein is expressed in all three midline populations. In Nfia(-)/-, mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium grise...
Uploads
Papers by Linda Richards
increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological
basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR)
strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete
agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is
known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor
functions in these mice that may also contribute to their behavioural phenotype.
Results: In this study, we performed diffusion tensor imaging and tractography, together with histological analyses
to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and
age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal
commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical
connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical
areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered
in BTBR mice between cortical areas and throughout development.
Conclusions: We demonstrate that interhemispheric connectivity and cortical area formation are altered in an
age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in
this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating
the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.
Keywords: Autism spectrum disorders (ASD), BTBR mice, Agenesis of the corpus callosum, Cortical area patterning,
Diffusion imaging
increased in prevalence in the past two decades. Animal models offer the opportunity to understand the biological
basis of these disorders. Studies comparing different mouse strains have identified the inbred BTBR T + tf/J (BTBR)
strain as a mouse model of ASD based on its anti-social and repetitive behaviours. Adult BTBR mice have complete
agenesis of the corpus callosum, reduced cortical thickness and changes in early neurogenesis. However, little is
known about the development or ultimate organisation of cortical areas devoted to specific sensory and motor
functions in these mice that may also contribute to their behavioural phenotype.
Results: In this study, we performed diffusion tensor imaging and tractography, together with histological analyses
to investigate the emergence of functional areas in the cerebral cortex and their connections in BTBR mice and
age-matched C57Bl/6 control mice. We found evidence that neither the anterior commissure nor the hippocampal
commissure compensate for the loss of callosal connections, indicating that no interhemispheric neocortical
connectivity is present in BTBR mice. We also found that both the primary visual and somatosensory cortical
areas are shifted medially in BTBR mice compared to controls and that cortical thickness is differentially altered
in BTBR mice between cortical areas and throughout development.
Conclusions: We demonstrate that interhemispheric connectivity and cortical area formation are altered in an
age- and region-specific manner in BTBR mice, which may contribute to the behavioural deficits previously observed in
this strain. Some of these developmental patterns of change are also present in human ASD patients, and elucidating
the aetiology driving cortical changes in BTBR mice may therefore help to increase our understanding of this disorder.
Keywords: Autism spectrum disorders (ASD), BTBR mice, Agenesis of the corpus callosum, Cortical area patterning,
Diffusion imaging