The defence chemicals and behavioural adaptations (gregariousness and active defensive behaviour)... more The defence chemicals and behavioural adaptations (gregariousness and active defensive behaviour) of pine sawXy larvae may be eVective against ant predation. However, previous studies have tested their defences against very few species of ants, and few experiments have explored ant predation in nature. We studied how larval group size (groups of 5 and 20 in Neodiprion sertifer and 10, 20
ABSTRACT One suggested anti-predator function of alarm calls is to deliver a message to a predato... more ABSTRACT One suggested anti-predator function of alarm calls is to deliver a message to a predator that it has been detected. Moreover, giving the alarm call could provide a signal to the predator that capturing the individual giving the alarm is more difficult than capturing its silent group members, as the caller is probably the most aware of the predator's location. In an aviary experiment using stuffed dummy Willow Tits Poecile montanus, we assessed whether an authentic alarm call given by Willow Tit affected Pygmy Owl Glaucidium passerinum prey preference. In the experiment, the Owls attacked only the ‘silent’ dummy individuals, suggesting that alarm calling could offer direct fitness benefits to the caller by decreasing the attack risk of the caller relative to its group members.
The defence chemicals and behavioural adaptations (gregariousness and active defensive behaviour)... more The defence chemicals and behavioural adaptations (gregariousness and active defensive behaviour) of pine sawXy larvae may be eVective against ant predation. However, previous studies have tested their defences against very few species of ants, and few experiments have explored ant predation in nature. We studied how larval group size (groups of 5 and 20 in Neodiprion sertifer and 10, 20
ABSTRACT One suggested anti-predator function of alarm calls is to deliver a message to a predato... more ABSTRACT One suggested anti-predator function of alarm calls is to deliver a message to a predator that it has been detected. Moreover, giving the alarm call could provide a signal to the predator that capturing the individual giving the alarm is more difficult than capturing its silent group members, as the caller is probably the most aware of the predator's location. In an aviary experiment using stuffed dummy Willow Tits Poecile montanus, we assessed whether an authentic alarm call given by Willow Tit affected Pygmy Owl Glaucidium passerinum prey preference. In the experiment, the Owls attacked only the ‘silent’ dummy individuals, suggesting that alarm calling could offer direct fitness benefits to the caller by decreasing the attack risk of the caller relative to its group members.
Uploads
Papers by Lindstedt Carita