A new nebulizer system is described that extends the analytical capability of the inductively cou... more A new nebulizer system is described that extends the analytical capability of the inductively coupled plasma technique to include the simultaneous determination of two elements Sb and Sn (hydride-forming), with two conventional elements, V and Zn. The main advantage of this system is its simultaneous determination of elements that form volatile hydrides and elements that do not, without any instrumental changes. Optimization of reaction and instrumental conditions was performed to characterize the new system. The performance of the new nebulizer system was evaluated by studying the effect of some transition metals (Ni, Cu, Co, and Fe, 1-1000 mg L(-1)) on the Sb, Sn, V, and Zn emission signals (1 mg L(-1)). Interferences from transition metal ions were found to be insignificant for determination of the four elements in presence of L: -cysteine. Long-term and short-term stability was also evaluated. The precision, expressed as RSD for 15 replicate measurements was 0.7% for Sb, 1.7% for Sn, 2.5% for V, and 2.3% for Zn at 200 microg L(-1) of each analyte. The detection limits obtained were 0.52, 1.3, 3.2, and 4.7 microg L(-1) for Sb, Sn, V, and Zn, respectively. Spike and recovery experiments were performed on the NIST 1643c trace metals in water standard reference material and results were in agreement with the certified values.
A new nebulizer system is described that extends the analytical capability of the inductively cou... more A new nebulizer system is described that extends the analytical capability of the inductively coupled plasma technique to include the simultaneous determination of two elements Sb and Sn (hydride-forming), with two conventional elements, V and Zn. The main advantage of this system is its simultaneous determination of elements that form volatile hydrides and elements that do not, without any instrumental changes. Optimization of reaction and instrumental conditions was performed to characterize the new system. The performance of the new nebulizer system was evaluated by studying the effect of some transition metals (Ni, Cu, Co, and Fe, 1-1000 mg L(-1)) on the Sb, Sn, V, and Zn emission signals (1 mg L(-1)). Interferences from transition metal ions were found to be insignificant for determination of the four elements in presence of L: -cysteine. Long-term and short-term stability was also evaluated. The precision, expressed as RSD for 15 replicate measurements was 0.7% for Sb, 1.7% for Sn, 2.5% for V, and 2.3% for Zn at 200 microg L(-1) of each analyte. The detection limits obtained were 0.52, 1.3, 3.2, and 4.7 microg L(-1) for Sb, Sn, V, and Zn, respectively. Spike and recovery experiments were performed on the NIST 1643c trace metals in water standard reference material and results were in agreement with the certified values.
Uploads
Papers by M. Murillo