Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Maaz Amjad

    In a combined piled raft foundation (CPRF) both raft and piles take their share of the total load applied. However, in practice, the contribution of a raft in taking load is usually ignored and the load is assumed to be supported on... more
    In a combined piled raft foundation (CPRF) both raft and piles take their share of the total load applied. However, in practice, the contribution of a raft in taking load is usually ignored and the load is assumed to be supported on piles. This way of CPRF becomes excessively conservative and uneconomical. To economize the design, relative load sharing of raft and piles in CPRF has to be found. In this connection, different simplified methods have been developed, each one with some limitations. In this study, three simplified methods have been applied to two cases of pile-raft systems. The methods include Randolph, Poulos-Davis-Randolph, and modified Poulos-Davis-Randolph. The first case is a hypothetical case consisting of a 12 m × 12 m raft supported on a square group of nine piles. The second case study is an actual eight-story building to be constructed in Peshawar, Pakistan. The building is supported on a pile-raft system, with raft resting on very soft clay underlain by dense ...
    The major criteria that control pile foundation design is pile bearing capacity (Pu). The load bearing capacity of piles is affected by the various characteristics of soils and the involvement of multiple parameters related to both soil... more
    The major criteria that control pile foundation design is pile bearing capacity (Pu). The load bearing capacity of piles is affected by the various characteristics of soils and the involvement of multiple parameters related to both soil and foundation. In this study, a new model for predicting bearing capacity is developed using an extreme gradient boosting (XGBoost) algorithm. A total of 200 driven piles static load test-based case histories were used to construct and verify the model. The developed XGBoost model results were compared to a number of commonly used algorithms—Adaptive Boosting (AdaBoost), Random Forest (RF), Decision Tree (DT) and Support Vector Machine (SVM) using various performance measure metrics such as coefficient of determination, mean absolute error, root mean square error, mean absolute relative error, Nash–Sutcliffe model efficiency coefficient and relative strength ratio. Furthermore, sensitivity analysis was performed to determine the effect of input para...
    Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete... more
    Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models’ development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R2), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system model...
    During severe earthquakes, liquefaction-induced lateral displacement causes significant damage to designed structures. As a result, geotechnical specialists must accurately estimate lateral displacement in liquefaction-prone areas in... more
    During severe earthquakes, liquefaction-induced lateral displacement causes significant damage to designed structures. As a result, geotechnical specialists must accurately estimate lateral displacement in liquefaction-prone areas in order to ensure long-term development. This research proposes a Gaussian Process Regression (GPR) model based on 247 post liquefaction in-situ free face ground conditions case studies for analyzing liquefaction-induced lateral displacement. The performance of the GPR model is assessed using statistical parameters, including the coefficient of determination, coefficient of correlation, Nash–Sutcliffe efficiency coefficient, root mean square error (RMSE), and ratio of the RMSE to the standard deviation of measured data. The developed GPR model predictive ability is compared to that of three other known models—evolutionary polynomial regression, artificial neural network, and multi-layer regression available in the literature. The results show that the GPR...