The aim of this study is to develop a relocatable modelling system able to describe the microbial... more The aim of this study is to develop a relocatable modelling system able to describe the microbial contamination that affects the quality of coastal bathing waters. Pollution events are mainly triggered by urban sewer outflows during massive rainy events, with relevant negative consequences on the marine environment and tourism and related activities of coastal towns. A finite element hydrodynamic model was applied to five study areas in the Adriatic Sea, which differ for urban, oceanographic and morphological conditions. With the help of transport-diffusion and microbial decay modules, the distribution of Escherichia coli was investigated during significant events. The numerical investigation was supported by detailed in situ observational datasets. The model results were evaluated against water level, sea temperature, salinity and E. coli concentrations acquired in situ, demonstrating the capacity of the modelling suite in simulating the circulation in the coastal areas of the Adri...
Many studies showed that the prevalence and the intensity of the infection with Anisakis larvae i... more Many studies showed that the prevalence and the intensity of the infection with Anisakis larvae in fish vary with species, fishing area and season. The traditional fish dishes in Mediterranean countries are lightly preserved and usually non-thermally processed, and as such create an important public health problem concerning anisakidosis. Croatian seafood products such as dry salted and marinated anchovies and sardines are exported in EU and wildly consumed as delicacy in many Mediterranean countries. As an important tourist destination Croatian traditional food may present a source of human Anisakis spp. disease to both, local population and foreign visitors. Although the European Union and Croatian regulations require freezing the fishery products intended for raw consumption (minimum 24 hours on -20 °C), domestically prepared traditional marinades are usually prepared without any thermal processing, because the textural changes during freezing may affect adversely the taste, colo...
ABSTRACT An integrated analysis of recent climate change, including atmosphere, sea and land, as ... more ABSTRACT An integrated analysis of recent climate change, including atmosphere, sea and land, as well as some of the impacts on society, has been conducted on the Marche Region in central Italy and the northern portion of the Adriatic Sea. The Marche Region is one of the 20 administrative divisions of Italy, located at a latitude approximately 43° North, with a total surface area of 9,366 km2 and 1,565,000 residents. The northern Adriatic Sea is the northernmost area of the Mediterranean Sea, and it has peculiar relevance for several aspects (environment, tourism, fisheries, economy). The collected environmental data included meteorological stations (daily maximum and minimum air temperature, daily precipitation), oceanographic stations (sea temperature, salinity, dissolved oxygen, nutrient salts concentration, chlorophyll) and river flows, over the last 50 years. The collected social data include 800 questionnaires and interviews carried out on selected samples of residents, decision-makers and emergency managers. These questionnaires and interviews aimed at highlighting the perception of climate change risks. The trend analysis of air temperature and precipitation data detailed an overall temperature increase in all seasons and rainfall decreases in Winter, Spring and Summer with Autumn increases, influencing river flow changes. Marine data showed a relevant warming of the water column in the period after 1990 in comparison with the previous period, particularly in the cold season. Surface salinity increased in Spring and Summer and strongly decreased in Autumn and Winter (according with the precipitation and river flow changes). These last mentioned changes, combined with anthropogenic effects, also influenced the marine ecosystems, with changes of nutrient salts, chlorophyll and dissolved oxygen. Changes in nutrient discharge from rivers influenced the average marine chlorophyll concentration reduction and the consequent average reduction of warm season hypoxic conditions. Indeed, all these changes influence several other aspects of the North Adriatic marine environment, such as coastal erosion, ecosystems, biological productivity, mucilage phenomena, harmful algal blooms, etc.. These impacts in the coastal areas are also evident inland. For example, the analysis of agro-meteorological extreme indices (aridity index, potential water deficit) suggests negative impacts in terms of soil deterioration and agricultural productivity, particularly evident in the area close to the coast. Finally, the analysis of social data revealed awareness among local residents of these impacts and associated risks connected to climate change. Yet, this awareness does not appear translated into long term adaptation plans. Apparently, the inability to define shared collective strategies is the result of a feeble sense of individual and institutional responsibility about climate matters, and ineffective information exchange among citizens, public administrators and the scientific community.
The aim of this study is to develop a relocatable modelling system able to describe the microbial... more The aim of this study is to develop a relocatable modelling system able to describe the microbial contamination that affects the quality of coastal bathing waters. Pollution events are mainly triggered by urban sewer outflows during massive rainy events, with relevant negative consequences on the marine environment and tourism and related activities of coastal towns. A finite element hydrodynamic model was applied to five study areas in the Adriatic Sea, which differ for urban, oceanographic and morphological conditions. With the help of transport-diffusion and microbial decay modules, the distribution of Escherichia coli was investigated during significant events. The numerical investigation was supported by detailed in situ observational datasets. The model results were evaluated against water level, sea temperature, salinity and E. coli concentrations acquired in situ, demonstrating the capacity of the modelling suite in simulating the circulation in the coastal areas of the Adri...
Many studies showed that the prevalence and the intensity of the infection with Anisakis larvae i... more Many studies showed that the prevalence and the intensity of the infection with Anisakis larvae in fish vary with species, fishing area and season. The traditional fish dishes in Mediterranean countries are lightly preserved and usually non-thermally processed, and as such create an important public health problem concerning anisakidosis. Croatian seafood products such as dry salted and marinated anchovies and sardines are exported in EU and wildly consumed as delicacy in many Mediterranean countries. As an important tourist destination Croatian traditional food may present a source of human Anisakis spp. disease to both, local population and foreign visitors. Although the European Union and Croatian regulations require freezing the fishery products intended for raw consumption (minimum 24 hours on -20 °C), domestically prepared traditional marinades are usually prepared without any thermal processing, because the textural changes during freezing may affect adversely the taste, colo...
ABSTRACT An integrated analysis of recent climate change, including atmosphere, sea and land, as ... more ABSTRACT An integrated analysis of recent climate change, including atmosphere, sea and land, as well as some of the impacts on society, has been conducted on the Marche Region in central Italy and the northern portion of the Adriatic Sea. The Marche Region is one of the 20 administrative divisions of Italy, located at a latitude approximately 43° North, with a total surface area of 9,366 km2 and 1,565,000 residents. The northern Adriatic Sea is the northernmost area of the Mediterranean Sea, and it has peculiar relevance for several aspects (environment, tourism, fisheries, economy). The collected environmental data included meteorological stations (daily maximum and minimum air temperature, daily precipitation), oceanographic stations (sea temperature, salinity, dissolved oxygen, nutrient salts concentration, chlorophyll) and river flows, over the last 50 years. The collected social data include 800 questionnaires and interviews carried out on selected samples of residents, decision-makers and emergency managers. These questionnaires and interviews aimed at highlighting the perception of climate change risks. The trend analysis of air temperature and precipitation data detailed an overall temperature increase in all seasons and rainfall decreases in Winter, Spring and Summer with Autumn increases, influencing river flow changes. Marine data showed a relevant warming of the water column in the period after 1990 in comparison with the previous period, particularly in the cold season. Surface salinity increased in Spring and Summer and strongly decreased in Autumn and Winter (according with the precipitation and river flow changes). These last mentioned changes, combined with anthropogenic effects, also influenced the marine ecosystems, with changes of nutrient salts, chlorophyll and dissolved oxygen. Changes in nutrient discharge from rivers influenced the average marine chlorophyll concentration reduction and the consequent average reduction of warm season hypoxic conditions. Indeed, all these changes influence several other aspects of the North Adriatic marine environment, such as coastal erosion, ecosystems, biological productivity, mucilage phenomena, harmful algal blooms, etc.. These impacts in the coastal areas are also evident inland. For example, the analysis of agro-meteorological extreme indices (aridity index, potential water deficit) suggests negative impacts in terms of soil deterioration and agricultural productivity, particularly evident in the area close to the coast. Finally, the analysis of social data revealed awareness among local residents of these impacts and associated risks connected to climate change. Yet, this awareness does not appear translated into long term adaptation plans. Apparently, the inability to define shared collective strategies is the result of a feeble sense of individual and institutional responsibility about climate matters, and ineffective information exchange among citizens, public administrators and the scientific community.
Uploads
Papers by Maja Krzelj