The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 11, 2015
Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In ... more Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cβ (PLCβ) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCβ activity and cellular [Ca(2+)], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca(2+) release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca(2+) store depletion, linking Ca(2+) release to light excitation. In IP3R-deficient photoreceptors, dark bumps...
The oxidation of cannabis constituents has given rise to their corresponding quinones, which have... more The oxidation of cannabis constituents has given rise to their corresponding quinones, which have been identified as cytotoxic agents. Out of these molecules the quinone of cannabidiol--the most abundant non-psychoactive cannabinoid in Cannabis sativa--has shown the highest cytotoxicity. This compound was named HU-331 and it exerts antiangiogenic properties, induces apoptosis to endothelial cells and inhibits topoisomerase II in nanomolar concentrations. Unlike other quinones, it is not cardiotoxic and does not induce the formation of free radicals. A comparative in vivo study in mice has shown HU-331 to be less toxic and more effective than the commonly used doxorubicin. This review summarises the properties of HU-331 and compares it with doxorubicin and other topoisomerase II inhibitors.
Transient receptor potential (TRP) channels are essential components of biological sensors that d... more Transient receptor potential (TRP) channels are essential components of biological sensors that detect changes in the environment in response to a myriad of stimuli. A major difficulty in the study of TRP channels is the lack of pharmacological agents that modulate most members of the TRP superfamily. Notable exceptions are the thermoTRPs, which respond to either cold or hot temperatures and are modulated by a relatively large number of chemical agents. In the present study we demonstrate by patch clamp whole cell recordings from Schneider 2 and Drosophila photoreceptor cells that carvacrol, a known activator of the thermoTRPs, TRPV3 and TRPA1 is an inhibitor of the Drosophila TRPL channels, which belongs to the TRPC subfamily. We also show that additional activators of TRPV3, thymol, eugenol, cinnamaldehyde and menthol are all inhibitors of the TRPL channel. Furthermore, carvacrol also inhibits the mammalian TRPM7 heterologously expressed in HEK cells and ectopically expressed in a primary culture of CA3-CA1 hippocampal brain neurons. This study, thus, identifies a novel inhibitor of TRPC and TRPM channels. Our finding that the activity of the non-thermoTRPs, TRPL and TRPM7 channels is modulated by the same compound as thermoTRPs, suggests that common mechanisms of channel modulation characterize TRP channels.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 11, 2015
Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In ... more Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cβ (PLCβ) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCβ activity and cellular [Ca(2+)], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca(2+) release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca(2+) store depletion, linking Ca(2+) release to light excitation. In IP3R-deficient photoreceptors, dark bumps...
The oxidation of cannabis constituents has given rise to their corresponding quinones, which have... more The oxidation of cannabis constituents has given rise to their corresponding quinones, which have been identified as cytotoxic agents. Out of these molecules the quinone of cannabidiol--the most abundant non-psychoactive cannabinoid in Cannabis sativa--has shown the highest cytotoxicity. This compound was named HU-331 and it exerts antiangiogenic properties, induces apoptosis to endothelial cells and inhibits topoisomerase II in nanomolar concentrations. Unlike other quinones, it is not cardiotoxic and does not induce the formation of free radicals. A comparative in vivo study in mice has shown HU-331 to be less toxic and more effective than the commonly used doxorubicin. This review summarises the properties of HU-331 and compares it with doxorubicin and other topoisomerase II inhibitors.
Transient receptor potential (TRP) channels are essential components of biological sensors that d... more Transient receptor potential (TRP) channels are essential components of biological sensors that detect changes in the environment in response to a myriad of stimuli. A major difficulty in the study of TRP channels is the lack of pharmacological agents that modulate most members of the TRP superfamily. Notable exceptions are the thermoTRPs, which respond to either cold or hot temperatures and are modulated by a relatively large number of chemical agents. In the present study we demonstrate by patch clamp whole cell recordings from Schneider 2 and Drosophila photoreceptor cells that carvacrol, a known activator of the thermoTRPs, TRPV3 and TRPA1 is an inhibitor of the Drosophila TRPL channels, which belongs to the TRPC subfamily. We also show that additional activators of TRPV3, thymol, eugenol, cinnamaldehyde and menthol are all inhibitors of the TRPL channel. Furthermore, carvacrol also inhibits the mammalian TRPM7 heterologously expressed in HEK cells and ectopically expressed in a primary culture of CA3-CA1 hippocampal brain neurons. This study, thus, identifies a novel inhibitor of TRPC and TRPM channels. Our finding that the activity of the non-thermoTRPs, TRPL and TRPM7 channels is modulated by the same compound as thermoTRPs, suggests that common mechanisms of channel modulation characterize TRP channels.
Uploads
Papers by Maximilian Peters