We studied changes that occurred between 1997 and 2005 on a secondary wet subtropical urban fores... more We studied changes that occurred between 1997 and 2005 on a secondary wet subtropical urban forest in the University of Puerto Rico's Botanical Garden (Bosque Estatal del Nuevo Milenio). Hurricane Georges passed south of the forest on November 21, 1998 ...
Description: The landscape units map of Puerto Rico represents climatic, substrate, and topograph... more Description: The landscape units map of Puerto Rico represents climatic, substrate, and topographic variation by integrating six climatic zones (Ewel and Whitmore 1973), six distinct substrates (Bawiec 2001, USGS 2005), five topographic positions or landforms (Martinuzzi et al. ...
Page 17. Annual Letter 2000-2001 13 Mapping Forest Type and Land Use of a Biodiversity Hotspot Ei... more Page 17. Annual Letter 2000-2001 13 Mapping Forest Type and Land Use of a Biodiversity Hotspot Eileen H. Helmer, Olga Ramos, Tania M. López, Maya Quiñones, and Wilmaris Díaz Introduction Extinction risks for Caribbean ...
This paper presents a summary of the forest fire reports in the insular Caribbean derived from bo... more This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire Information for Resource Management System data can be observed. Future research is recommended to better understand the nature of these differences. While there is a general lack of available statistical data on forest fires in the Caribbean, a few general observations can be made: Forest fires occur mainly in dry forest types (500 to 1000 mm of mean annual rainfall). These are also the areas where most human settlements are located. Lowland high forests and montane forests with higher rainfall (1000 and more mm y(-1)) are less susceptible to forest fire, but they can burn in exceptionally dry years. Most of the dry forest ecosystems in the Caribbean can be considered to be fire-sensitive ecosystems, while the pine forests in the Caribbean (Cuba, Dominican Republic, and the Bahamas) are maintained by wildfires. In fire-sensitive ecosystems, uncontrolled burning often encourages the spread of alien invasive species. A Caribbean Fire Management Cooperation Strategy was developed between 2005 and 2006 under auspices of the Food and Agriculture Organization of the United Nations. This regional strategy aims to strengthen Caribbean fire management networking by encouraging closer collaboration among countries with similar ecological conditions. The strategy for the Caribbean identifies a number of research, training, and management activities to improve wildfire management capacity in the Caribbean.
Journal of Applied Meteorology and Climatology, 2015
The potential ecological and economic effects of climate change for tropical islands were studied... more The potential ecological and economic effects of climate change for tropical islands were studied using output from 12 statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case. Two model selection/model averaging strategies were used: the average of all available GCMs and the average of the models that are able to reproduce the observed large-scale dynamics that control precipitation over the Caribbean. Five island-wide and multidecadal averages of daily precipitation and temperature were estimated by way of a climatology-informed interpolation of the site-specific downscaled climate model output. Annual cooling degree-days (CDD) were calculated as a proxy index for airconditioning energy demand, and two measures of annual no-rainfall days were used as drought indices. Holdridge life zone classification was used to map the possible ecological effects of climate change. Precipitation is predicted to decline in both model ensembles, but the decrease was more severe in the ''regionally consistent'' models. The precipitation declines cause gradual and linear increases in drought intensity and extremes. The warming from the 1960–90 period to the 2071–99 period was 4.68–98C depending on the global emission scenarios and location. This warming may cause increases in CDD, and consequently increasing energy demands. Life zones may shift from wetter to drier zones with the possibility of losing most, if not all, of the subtropical rain forests and extinction risks to rain forest specialists or obligates.
We studied changes that occurred between 1997 and 2005 on a secondary wet subtropical urban fores... more We studied changes that occurred between 1997 and 2005 on a secondary wet subtropical urban forest in the University of Puerto Rico's Botanical Garden (Bosque Estatal del Nuevo Milenio). Hurricane Georges passed south of the forest on November 21, 1998 ...
Description: The landscape units map of Puerto Rico represents climatic, substrate, and topograph... more Description: The landscape units map of Puerto Rico represents climatic, substrate, and topographic variation by integrating six climatic zones (Ewel and Whitmore 1973), six distinct substrates (Bawiec 2001, USGS 2005), five topographic positions or landforms (Martinuzzi et al. ...
Page 17. Annual Letter 2000-2001 13 Mapping Forest Type and Land Use of a Biodiversity Hotspot Ei... more Page 17. Annual Letter 2000-2001 13 Mapping Forest Type and Land Use of a Biodiversity Hotspot Eileen H. Helmer, Olga Ramos, Tania M. López, Maya Quiñones, and Wilmaris Díaz Introduction Extinction risks for Caribbean ...
This paper presents a summary of the forest fire reports in the insular Caribbean derived from bo... more This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire Information for Resource Management System data can be observed. Future research is recommended to better understand the nature of these differences. While there is a general lack of available statistical data on forest fires in the Caribbean, a few general observations can be made: Forest fires occur mainly in dry forest types (500 to 1000 mm of mean annual rainfall). These are also the areas where most human settlements are located. Lowland high forests and montane forests with higher rainfall (1000 and more mm y(-1)) are less susceptible to forest fire, but they can burn in exceptionally dry years. Most of the dry forest ecosystems in the Caribbean can be considered to be fire-sensitive ecosystems, while the pine forests in the Caribbean (Cuba, Dominican Republic, and the Bahamas) are maintained by wildfires. In fire-sensitive ecosystems, uncontrolled burning often encourages the spread of alien invasive species. A Caribbean Fire Management Cooperation Strategy was developed between 2005 and 2006 under auspices of the Food and Agriculture Organization of the United Nations. This regional strategy aims to strengthen Caribbean fire management networking by encouraging closer collaboration among countries with similar ecological conditions. The strategy for the Caribbean identifies a number of research, training, and management activities to improve wildfire management capacity in the Caribbean.
Journal of Applied Meteorology and Climatology, 2015
The potential ecological and economic effects of climate change for tropical islands were studied... more The potential ecological and economic effects of climate change for tropical islands were studied using output from 12 statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case. Two model selection/model averaging strategies were used: the average of all available GCMs and the average of the models that are able to reproduce the observed large-scale dynamics that control precipitation over the Caribbean. Five island-wide and multidecadal averages of daily precipitation and temperature were estimated by way of a climatology-informed interpolation of the site-specific downscaled climate model output. Annual cooling degree-days (CDD) were calculated as a proxy index for airconditioning energy demand, and two measures of annual no-rainfall days were used as drought indices. Holdridge life zone classification was used to map the possible ecological effects of climate change. Precipitation is predicted to decline in both model ensembles, but the decrease was more severe in the ''regionally consistent'' models. The precipitation declines cause gradual and linear increases in drought intensity and extremes. The warming from the 1960–90 period to the 2071–99 period was 4.68–98C depending on the global emission scenarios and location. This warming may cause increases in CDD, and consequently increasing energy demands. Life zones may shift from wetter to drier zones with the possibility of losing most, if not all, of the subtropical rain forests and extinction risks to rain forest specialists or obligates.
Uploads
Papers by Maya Quinones