BackgroundVoltage-gated Na+ channels (VGSCs) are heteromeric protein complexes containing pore-fo... more BackgroundVoltage-gated Na+ channels (VGSCs) are heteromeric protein complexes containing pore-forming ¿ subunits and smaller, non-pore-forming ß subunits. VGSCs are classically expressed in electrically excitable cells, e.g. neurons. VGSCs are also expressed in tumour cells, including breast cancer (BCa) cells, where they enhance cellular migration and invasion. However, despite extensive work defining in detail the molecular mechanisms underlying the expression of VGSCs and their pro-invasive role in cancer cells, there has been a notable lack of clinically relevant in vivo data exploring their value as potential therapeutic targets.FindingsWe have previously reported that the VGSC-blocking antiepileptic drug phenytoin inhibits the migration and invasion of metastatic MDA-MB-231 cells in vitro. The purpose of the present study was to establish whether VGSCs might be viable therapeutic targets by testing the effect of phenytoin on tumour growth and metastasis in vivo. We found that...
BackgroundVoltage-gated Na+ channels (VGSCs) are heteromeric protein complexes containing pore-fo... more BackgroundVoltage-gated Na+ channels (VGSCs) are heteromeric protein complexes containing pore-forming ¿ subunits and smaller, non-pore-forming ß subunits. VGSCs are classically expressed in electrically excitable cells, e.g. neurons. VGSCs are also expressed in tumour cells, including breast cancer (BCa) cells, where they enhance cellular migration and invasion. However, despite extensive work defining in detail the molecular mechanisms underlying the expression of VGSCs and their pro-invasive role in cancer cells, there has been a notable lack of clinically relevant in vivo data exploring their value as potential therapeutic targets.FindingsWe have previously reported that the VGSC-blocking antiepileptic drug phenytoin inhibits the migration and invasion of metastatic MDA-MB-231 cells in vitro. The purpose of the present study was to establish whether VGSCs might be viable therapeutic targets by testing the effect of phenytoin on tumour growth and metastasis in vivo. We found that...
Uploads
Papers by Michaela Nelson