DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired imm... more DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte-derived immature DCs generated under chronic hypoxic conditions (H-iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen-presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H-iDCs express triggering receptor expressed on myeloid cells(TREM-1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H-iDC reoxygenation results in TREM-1 down-modulation. TREM-1 engagement promotes upregulation of T-cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17-priming cytokines/chemokines, resulting in increased T-cell responses. These results suggest that TREM-1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1-cell trafficking and activation by iDCs differentiated at pathologic sites.
In this study, murine Mesenchymal Stem Cells (MSCs) labeled with the clinically approved MRI agen... more In this study, murine Mesenchymal Stem Cells (MSCs) labeled with the clinically approved MRI agent Gadoteridol through a procedure based on the hypo-osmotic shock were successfully tracked in vivo in a murine model of Spinal Cord Injury (SCI). With respect to iso-osmotic incubations, the hypo-osmotic labeling significantly increased the Gd(3+) cellular uptake, and enhanced both the longitudinal relaxivity (r1) of the intracellular Gadoteridol and the Signal to Noise Ratio (SNR) measured on cell pellets, without altering the biological and functional profile of cells. A substantial T1 Contrast Enhancement after local transplantation of 3.0×10(5) labeled cells in SCI mice enabled to follow their migratory dynamics in vivo for about 10days, and treated animals recovered from the motor impairment caused by the injury, indicating unaltered therapeutic efficacy. Finally, analytical and histological data corroborated the imaging results, highlighting the opportunity to perform a precise and reliable monitoring of the cell-based therapy.
Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which ha... more Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which have been recently proposed as innovative nanocarriers for biomedical applications. Recently, we have demonstrated that dendrimersomes self-assembled from (3,5)12G1-PE-BMPA-G2-(OH)8 dendrimers can be successfully loaded with hydrophilic and amphiphilic imaging contrast agents. Here, we present two newly synthesized low generation isomeric JDs: JDG0G1(3,5) and JDG0G1(3,4). Though less branched than the above-cited dendrimers, they retain the ability to form self-assembled, almost monodisperse vesicular nanoparticles. This contribution reports on the characterization of such nanovesicles loaded with the clinically approved MRI probe Gadoteridol and the comparison with the related nanoparticles assembled from more branched dendrimers. Special emphasis was given to the in vitro stability test of the systems in biologically relevant media, complemented by preliminary in vivo data about blood circulation lifetime collected from healthy mice. The results point to very promising safety and stability profiles of the nanovesicles, in particular for those made of JDG0G1(3,5), whose spontaneous self-organization in water gives rise to a homogeneous suspension. Importantly, the blood lifetimes of these systems are comparable to those of standard liposomes. By virtue of the reported results, the herein presented nanovesicles augur well for future use in a variety of biomedical applications.
DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired imm... more DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte-derived immature DCs generated under chronic hypoxic conditions (H-iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen-presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H-iDCs express triggering receptor expressed on myeloid cells(TREM-1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H-iDC reoxygenation results in TREM-1 down-modulation. TREM-1 engagement promotes upregulation of T-cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17-priming cytokines/chemokines, resulting in increased T-cell responses. These results suggest that TREM-1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1-cell trafficking and activation by iDCs differentiated at pathologic sites.
In this study, murine Mesenchymal Stem Cells (MSCs) labeled with the clinically approved MRI agen... more In this study, murine Mesenchymal Stem Cells (MSCs) labeled with the clinically approved MRI agent Gadoteridol through a procedure based on the hypo-osmotic shock were successfully tracked in vivo in a murine model of Spinal Cord Injury (SCI). With respect to iso-osmotic incubations, the hypo-osmotic labeling significantly increased the Gd(3+) cellular uptake, and enhanced both the longitudinal relaxivity (r1) of the intracellular Gadoteridol and the Signal to Noise Ratio (SNR) measured on cell pellets, without altering the biological and functional profile of cells. A substantial T1 Contrast Enhancement after local transplantation of 3.0×10(5) labeled cells in SCI mice enabled to follow their migratory dynamics in vivo for about 10days, and treated animals recovered from the motor impairment caused by the injury, indicating unaltered therapeutic efficacy. Finally, analytical and histological data corroborated the imaging results, highlighting the opportunity to perform a precise and reliable monitoring of the cell-based therapy.
Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which ha... more Dendrimersomes are nanosized vesicles constituted by amphiphilic Janus dendrimers (JDs), which have been recently proposed as innovative nanocarriers for biomedical applications. Recently, we have demonstrated that dendrimersomes self-assembled from (3,5)12G1-PE-BMPA-G2-(OH)8 dendrimers can be successfully loaded with hydrophilic and amphiphilic imaging contrast agents. Here, we present two newly synthesized low generation isomeric JDs: JDG0G1(3,5) and JDG0G1(3,4). Though less branched than the above-cited dendrimers, they retain the ability to form self-assembled, almost monodisperse vesicular nanoparticles. This contribution reports on the characterization of such nanovesicles loaded with the clinically approved MRI probe Gadoteridol and the comparison with the related nanoparticles assembled from more branched dendrimers. Special emphasis was given to the in vitro stability test of the systems in biologically relevant media, complemented by preliminary in vivo data about blood circulation lifetime collected from healthy mice. The results point to very promising safety and stability profiles of the nanovesicles, in particular for those made of JDG0G1(3,5), whose spontaneous self-organization in water gives rise to a homogeneous suspension. Importantly, the blood lifetimes of these systems are comparable to those of standard liposomes. By virtue of the reported results, the herein presented nanovesicles augur well for future use in a variety of biomedical applications.
Uploads
Papers by Miriam Filippi