Keywords: chemokine knockout mice Ccl2/Cx3cr1 double knockout mice Ccl2 Cx3cr1 age-related macula... more Keywords: chemokine knockout mice Ccl2/Cx3cr1 double knockout mice Ccl2 Cx3cr1 age-related macular degeneration retinal degeneration subretinal macrophages genetic background a b s t r a c t Monocytes, macrophages, dendritic cells and microglia play critical roles in the local immune response to acute and chronic tissue injury and have been implicated in the pathogenesis of age-related macular degeneration. Defects in Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling cause enhanced accumulation of bloated subretinal microglia/macrophages in senescent mice and this phenomenon is reported to result in the acceleration of age-related retinal degeneration. The purpose of this study was to determine whether defects in CCL2-CCR2 and CX3CL1-CX3CR1 signalling pathways, alone or in combination, cause age-dependent retinal degeneration. We tested whether three chemokine knockout mouse lines, Ccl2 À/À , Cx3cr1 À/À and Ccl2 À/À /Cx3cr1 À/À , in comparison to age-matched C57Bl/6 control mice show differences in subretinal macrophage accumulation and loss of adjacent photoreceptor cells at 12e14 months of age. All mouse lines are derived from common parental strains and do not carry the homozygous rd8 mutation in the Crb1 gene that has been a major confounding factor in previous reports. We quantified subretinal macrophages by counting autofluorescent lesions in fundus images obtained by scanning laser ophthalmoscopy (AF-SLO) and by immunohistochemistry for Iba1 positive cells. The accumulation of subretinal macrophages was enhanced in Ccl2 À/À , but not in Cx3cr1 À/À or Ccl2 À/À /Cx3cr1 À/À mice. We identified no evidence of retinal degeneration in any of these mouse lines by TUNEL staining or semithin histology. In conclusion, CCL2-CCR2 and/or CX3CL1-CX3CR1 signalling defects may differentially affect the trafficking of microglia and macrophages in the retina during ageing, but do not appear to cause agerelated retinal degeneration in mice.
Age-Related Macular Degeneration (AMD) is characterized by the accumulation of lipid- and protein... more Age-Related Macular Degeneration (AMD) is characterized by the accumulation of lipid- and protein-rich deposits in Bruch's Membrane (BrM). A consequent decrease in hydraulic conductivity and impairment of transport through BrM may play a central role in the pathogenesis of AMD. The mechanism of deposit formation in AMD had been suggested to show similarities to the formation of atherosclerotic plaques in which the interactions of extracellular matrix proteoglycans with apolipoprotein-B 100 (apoB-100) play an important role. A prime candidate for this interaction is the small leucin-rich proteoglycan biglycan. The aim of our study was to test the effect of the simultaneous overexpression of human apoB-100 and biglycan genes in combination with a high-cholesterol diet on BrM morphology in transgenic mice. Six-weeks-old homozygous apoB-100 or biglycan, hemizygous apoB-100/biglycan transgenic and wild-type C57Bl/6 mice were fed either a standard chow or a diet supplemented with 2% cholesterol for 17 weeks. Animals were sacrificed, serum lipid levels were measured and eyes were processed for transmission electron microscopy (TEM) according to standard protocol. Morphometric analysis of digitally acquired TEM images of BrM showed that in apoB-100 and double transgenic animals fed a high-cholesterol diet, the BrM thickness was significantly increased compared to wild-type animals. Both groups had electron-lucent profiles in clusters, scattered throughout the collagenous layers of BrM, and focal nodules of an amorphous material of intermediate electron-density between the plasma and basement membranes of the retinal pigment epithelium (RPE). BrM thickness in these two groups correlated well with elevated cholesterol levels. Unexpectedly, animals overexpressing biglycan alone showed a marked, diet-independent increase in BrM thickness associated with a layer of a basement membrane-like material in outer BrM. The effects of biglycan overexpression are intriguing and further investigations are needed to elucidate the underlying mechanisms.
To investigate the ultrastructural features of idiopathic full-thickness macular hole (FTMH) oper... more To investigate the ultrastructural features of idiopathic full-thickness macular hole (FTMH) opercula excised during vitrectomy and to correlate them with the outcome of surgery. Opercula were collected from eyes undergoing vitrectomy for stage 3 FTMH using noncrushing, cupped foreign body forceps. Following immediate fixation, specimens were processed for transmission electron microscopy. The ultrastructural features were correlated with the clinical data recorded for each patient before and after surgery. Eighteen specimens were studied. Native vitreous collagen was identified on the surface of all 18, while fragments of internal limiting membrane were present in 11 (61%). Eleven (61%) were found to contain only glia, comprising fibrous astrocytes and Müller cells in variable proportions. The remaining 7 (39%) were found to contain, in addition to glia, neurites and synaptic complexes, of which some were typical of cone photoreceptors. The initial surgical closure rate was significantly better in eyes in which only glia were present (9/11 [82%]), compared with those with neurites (1/7 [14%]) (P = .01). Once closure had been achieved with reoperation, the median final visual acuity was 20/60 in both groups (P = .26), although the likelihood of achieving an acuity of 20/40 or better was greater in the former (50%) than the latter group (17%). Two distinct types of opercula occur in association with stage 3 FTMH--those containing only glia (pseudo-opercula), which are probably associated with a foveal dehiscence and little or no loss of foveal tissue, and those containing both glia and a significant number of avulsed foveal cones (true opercula), which arise from a full-thickness foveal tear. Although the loss of foveal tissue in true opercula would seem to explain the worse initial anatomical and more modest visual results in some eyes, significant visual improvement may still be achieved after successful closure. The presence of neurites in true opercula suggests that, in at least some cases, direct traction on the foveal retina leads to macular hole formation.
X-ray phase contrast imaging is a very promising technique that may lead to significant advanceme... more X-ray phase contrast imaging is a very promising technique that may lead to significant advancements in a variety of fields, perhaps most notably, medical imaging. The radiation physics group at University College London is currently developing an x-ray phase contrast imaging technique that works with laboratory x-ray sources. This system essentially measures the degree to which photons are refracted by regions of an imaged object. The amount of refraction that may be expected to be encountered in practice impacts strongly upon the design of the imaging system. In this paper, we derive an approximate expression between the properties of archetypal imaged objects encountered in practice and the resulting distribution of refracted photons. This is used to derive constraints governing the design of the system.
Background and purpose: This study explores methods to reduce dose due to kV-CBCT imaging for pat... more Background and purpose: This study explores methods to reduce dose due to kV-CBCT imaging for patients undergoing radiation therapy. Material and methods: Doses resulting from kV-CBCT scans were calculated using Monte Carlo techniques and were analyzed using dose-volume histograms. Patients were modeled as were CBCT acquisitions using both 360°and 200°gantry rotations. The effects of using the half fan bow-tie and the full fan bow-tie filters were examined. Results: Doses for OBI 1.3 are 15 times (head), 5 times (thorax) and 2 times (Pelvis) larger than the current OBI 1.4. When using 200°scans, the doses to eyes and cord are 0.2 (or 0.65) cGy and 0.35 (or 0.2) cGy when rotating the X-ray source underneath (or above) the patient, respectively. The 360°Pelvis scan dose is 1-2 cGy. The rectum dose is 1.1 (or 2.8) cGy when rotating the source above (or below) the patient with the 200°Pelvis scan. The dose increases up to two times as the patient size decreases. Conclusions: The dose can be minimized by reducing the scan length, the exposure settings, by selecting the gantry rotation angles, and by using the full fan bow-tie whenever possible.
The specific absorption rates (SAR) of three tissues (muscle, brain, bone) are investigated both ... more The specific absorption rates (SAR) of three tissues (muscle, brain, bone) are investigated both theoretically and experimentally for MRI at the first time. Finite difference time domain (FDTD) analysis is used to simulate the average SAR of three tissues at three magnetic field strengths (0.5 T, 1.5 T, 3T). Simulations show that the SAR of muscle, brain and bone increase 7.49 folds, 10.87 folds and 12.92 folds respectively when the magnetic field strength increases from 0.5 T to 3 T. Experiments are carried out to measure SRAS of different phantoms which simulate the three human tissues at 1.5T and 3T. The experiment results agree with the simulation data very well and within only 11% difference.
Journal of applied clinical medical physics / American College of Medical Physics, 2014
The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric... more The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric calibration system for kilovoltage (kV) and megavoltage (MV) imagers on Varian C-series linear accelerators (linacs). IsoCal calibration starts by imaging a phantom and collimator plate using MV images with different collimator angles, as well as MV and kV images at different gantry angles. The software then identifies objects on the collimator plate and in the phantom to determine the location of the treatment isocenter and its relation to the MV and kV imager centers. It calculates offsets between the positions of the imaging panels and the treatment isocenter as a function of gantry angle and writes a correction file that can be applied to MV and kV systems to correct for those offsets in the position of the panels. We performed IsoCal calibration three times on each of five Varian C-series linacs, each time with an independent setup. We then compared the IsoCal calibrations with a s...
ABSTRACT Grating-based quantitative polychromatic x-ray phase imaging is currently a very active ... more ABSTRACT Grating-based quantitative polychromatic x-ray phase imaging is currently a very active area of research. It has already been shown that, in such systems, the retrieved differential phase depends upon the spectral properties of the source, the gratings, the detector, and the sample. In this paper, we show that the retrieved sample absorption also depends upon the spectral properties of the gratings. Further, we compare the spectral dependence of both retrieved phase and absorption for the grating interferometer and coded aperture techniques. These results enable us to conclude that in both cases quantitative phase imaging systems cannot be described by an effective energy which is independent of the sample. This has important implications for applications where an absolute measure of phase is important and in tomography.
ABSTRACT X-ray phase contrast imaging is a powerful technique that allows detection of changes in... more ABSTRACT X-ray phase contrast imaging is a powerful technique that allows detection of changes in the phase of x-ray wavefronts as they pass through a sample. As a result, details not visible in conventional x-ray absorption imaging can be detected. Until recently the majority of applications of phase contrast imaging were at synchrotron facilities due to the availability of their high flux and coherence; however, a number of techniques have appeared recently that allow phase contrast imaging to be performed using laboratory sources. Here we describe a phase contrast imaging technique, developed at University College London, that uses two coded apertures. The x-ray beam is shaped by the pre-sample aperture, and small deviations in the x-ray propagation direction are detected with the help of the detector aperture. In contrast with other methods, it has a much more relaxed requirement for the source size (it works with source sizes up to 100 mum). A working prototype coded-aperture system has been built. An x-ray detector with directly deposited columnar CsI has been used to minimize signal spill-over into neighboring pixels. Phase contrast images obtained with the system have demonstrated its effectiveness for imaging low-absorption materials.
Keywords: chemokine knockout mice Ccl2/Cx3cr1 double knockout mice Ccl2 Cx3cr1 age-related macula... more Keywords: chemokine knockout mice Ccl2/Cx3cr1 double knockout mice Ccl2 Cx3cr1 age-related macular degeneration retinal degeneration subretinal macrophages genetic background a b s t r a c t Monocytes, macrophages, dendritic cells and microglia play critical roles in the local immune response to acute and chronic tissue injury and have been implicated in the pathogenesis of age-related macular degeneration. Defects in Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling cause enhanced accumulation of bloated subretinal microglia/macrophages in senescent mice and this phenomenon is reported to result in the acceleration of age-related retinal degeneration. The purpose of this study was to determine whether defects in CCL2-CCR2 and CX3CL1-CX3CR1 signalling pathways, alone or in combination, cause age-dependent retinal degeneration. We tested whether three chemokine knockout mouse lines, Ccl2 À/À , Cx3cr1 À/À and Ccl2 À/À /Cx3cr1 À/À , in comparison to age-matched C57Bl/6 control mice show differences in subretinal macrophage accumulation and loss of adjacent photoreceptor cells at 12e14 months of age. All mouse lines are derived from common parental strains and do not carry the homozygous rd8 mutation in the Crb1 gene that has been a major confounding factor in previous reports. We quantified subretinal macrophages by counting autofluorescent lesions in fundus images obtained by scanning laser ophthalmoscopy (AF-SLO) and by immunohistochemistry for Iba1 positive cells. The accumulation of subretinal macrophages was enhanced in Ccl2 À/À , but not in Cx3cr1 À/À or Ccl2 À/À /Cx3cr1 À/À mice. We identified no evidence of retinal degeneration in any of these mouse lines by TUNEL staining or semithin histology. In conclusion, CCL2-CCR2 and/or CX3CL1-CX3CR1 signalling defects may differentially affect the trafficking of microglia and macrophages in the retina during ageing, but do not appear to cause agerelated retinal degeneration in mice.
Age-Related Macular Degeneration (AMD) is characterized by the accumulation of lipid- and protein... more Age-Related Macular Degeneration (AMD) is characterized by the accumulation of lipid- and protein-rich deposits in Bruch's Membrane (BrM). A consequent decrease in hydraulic conductivity and impairment of transport through BrM may play a central role in the pathogenesis of AMD. The mechanism of deposit formation in AMD had been suggested to show similarities to the formation of atherosclerotic plaques in which the interactions of extracellular matrix proteoglycans with apolipoprotein-B 100 (apoB-100) play an important role. A prime candidate for this interaction is the small leucin-rich proteoglycan biglycan. The aim of our study was to test the effect of the simultaneous overexpression of human apoB-100 and biglycan genes in combination with a high-cholesterol diet on BrM morphology in transgenic mice. Six-weeks-old homozygous apoB-100 or biglycan, hemizygous apoB-100/biglycan transgenic and wild-type C57Bl/6 mice were fed either a standard chow or a diet supplemented with 2% cholesterol for 17 weeks. Animals were sacrificed, serum lipid levels were measured and eyes were processed for transmission electron microscopy (TEM) according to standard protocol. Morphometric analysis of digitally acquired TEM images of BrM showed that in apoB-100 and double transgenic animals fed a high-cholesterol diet, the BrM thickness was significantly increased compared to wild-type animals. Both groups had electron-lucent profiles in clusters, scattered throughout the collagenous layers of BrM, and focal nodules of an amorphous material of intermediate electron-density between the plasma and basement membranes of the retinal pigment epithelium (RPE). BrM thickness in these two groups correlated well with elevated cholesterol levels. Unexpectedly, animals overexpressing biglycan alone showed a marked, diet-independent increase in BrM thickness associated with a layer of a basement membrane-like material in outer BrM. The effects of biglycan overexpression are intriguing and further investigations are needed to elucidate the underlying mechanisms.
To investigate the ultrastructural features of idiopathic full-thickness macular hole (FTMH) oper... more To investigate the ultrastructural features of idiopathic full-thickness macular hole (FTMH) opercula excised during vitrectomy and to correlate them with the outcome of surgery. Opercula were collected from eyes undergoing vitrectomy for stage 3 FTMH using noncrushing, cupped foreign body forceps. Following immediate fixation, specimens were processed for transmission electron microscopy. The ultrastructural features were correlated with the clinical data recorded for each patient before and after surgery. Eighteen specimens were studied. Native vitreous collagen was identified on the surface of all 18, while fragments of internal limiting membrane were present in 11 (61%). Eleven (61%) were found to contain only glia, comprising fibrous astrocytes and Müller cells in variable proportions. The remaining 7 (39%) were found to contain, in addition to glia, neurites and synaptic complexes, of which some were typical of cone photoreceptors. The initial surgical closure rate was significantly better in eyes in which only glia were present (9/11 [82%]), compared with those with neurites (1/7 [14%]) (P = .01). Once closure had been achieved with reoperation, the median final visual acuity was 20/60 in both groups (P = .26), although the likelihood of achieving an acuity of 20/40 or better was greater in the former (50%) than the latter group (17%). Two distinct types of opercula occur in association with stage 3 FTMH--those containing only glia (pseudo-opercula), which are probably associated with a foveal dehiscence and little or no loss of foveal tissue, and those containing both glia and a significant number of avulsed foveal cones (true opercula), which arise from a full-thickness foveal tear. Although the loss of foveal tissue in true opercula would seem to explain the worse initial anatomical and more modest visual results in some eyes, significant visual improvement may still be achieved after successful closure. The presence of neurites in true opercula suggests that, in at least some cases, direct traction on the foveal retina leads to macular hole formation.
X-ray phase contrast imaging is a very promising technique that may lead to significant advanceme... more X-ray phase contrast imaging is a very promising technique that may lead to significant advancements in a variety of fields, perhaps most notably, medical imaging. The radiation physics group at University College London is currently developing an x-ray phase contrast imaging technique that works with laboratory x-ray sources. This system essentially measures the degree to which photons are refracted by regions of an imaged object. The amount of refraction that may be expected to be encountered in practice impacts strongly upon the design of the imaging system. In this paper, we derive an approximate expression between the properties of archetypal imaged objects encountered in practice and the resulting distribution of refracted photons. This is used to derive constraints governing the design of the system.
Background and purpose: This study explores methods to reduce dose due to kV-CBCT imaging for pat... more Background and purpose: This study explores methods to reduce dose due to kV-CBCT imaging for patients undergoing radiation therapy. Material and methods: Doses resulting from kV-CBCT scans were calculated using Monte Carlo techniques and were analyzed using dose-volume histograms. Patients were modeled as were CBCT acquisitions using both 360°and 200°gantry rotations. The effects of using the half fan bow-tie and the full fan bow-tie filters were examined. Results: Doses for OBI 1.3 are 15 times (head), 5 times (thorax) and 2 times (Pelvis) larger than the current OBI 1.4. When using 200°scans, the doses to eyes and cord are 0.2 (or 0.65) cGy and 0.35 (or 0.2) cGy when rotating the X-ray source underneath (or above) the patient, respectively. The 360°Pelvis scan dose is 1-2 cGy. The rectum dose is 1.1 (or 2.8) cGy when rotating the source above (or below) the patient with the 200°Pelvis scan. The dose increases up to two times as the patient size decreases. Conclusions: The dose can be minimized by reducing the scan length, the exposure settings, by selecting the gantry rotation angles, and by using the full fan bow-tie whenever possible.
The specific absorption rates (SAR) of three tissues (muscle, brain, bone) are investigated both ... more The specific absorption rates (SAR) of three tissues (muscle, brain, bone) are investigated both theoretically and experimentally for MRI at the first time. Finite difference time domain (FDTD) analysis is used to simulate the average SAR of three tissues at three magnetic field strengths (0.5 T, 1.5 T, 3T). Simulations show that the SAR of muscle, brain and bone increase 7.49 folds, 10.87 folds and 12.92 folds respectively when the magnetic field strength increases from 0.5 T to 3 T. Experiments are carried out to measure SRAS of different phantoms which simulate the three human tissues at 1.5T and 3T. The experiment results agree with the simulation data very well and within only 11% difference.
Journal of applied clinical medical physics / American College of Medical Physics, 2014
The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric... more The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric calibration system for kilovoltage (kV) and megavoltage (MV) imagers on Varian C-series linear accelerators (linacs). IsoCal calibration starts by imaging a phantom and collimator plate using MV images with different collimator angles, as well as MV and kV images at different gantry angles. The software then identifies objects on the collimator plate and in the phantom to determine the location of the treatment isocenter and its relation to the MV and kV imager centers. It calculates offsets between the positions of the imaging panels and the treatment isocenter as a function of gantry angle and writes a correction file that can be applied to MV and kV systems to correct for those offsets in the position of the panels. We performed IsoCal calibration three times on each of five Varian C-series linacs, each time with an independent setup. We then compared the IsoCal calibrations with a s...
ABSTRACT Grating-based quantitative polychromatic x-ray phase imaging is currently a very active ... more ABSTRACT Grating-based quantitative polychromatic x-ray phase imaging is currently a very active area of research. It has already been shown that, in such systems, the retrieved differential phase depends upon the spectral properties of the source, the gratings, the detector, and the sample. In this paper, we show that the retrieved sample absorption also depends upon the spectral properties of the gratings. Further, we compare the spectral dependence of both retrieved phase and absorption for the grating interferometer and coded aperture techniques. These results enable us to conclude that in both cases quantitative phase imaging systems cannot be described by an effective energy which is independent of the sample. This has important implications for applications where an absolute measure of phase is important and in tomography.
ABSTRACT X-ray phase contrast imaging is a powerful technique that allows detection of changes in... more ABSTRACT X-ray phase contrast imaging is a powerful technique that allows detection of changes in the phase of x-ray wavefronts as they pass through a sample. As a result, details not visible in conventional x-ray absorption imaging can be detected. Until recently the majority of applications of phase contrast imaging were at synchrotron facilities due to the availability of their high flux and coherence; however, a number of techniques have appeared recently that allow phase contrast imaging to be performed using laboratory sources. Here we describe a phase contrast imaging technique, developed at University College London, that uses two coded apertures. The x-ray beam is shaped by the pre-sample aperture, and small deviations in the x-ray propagation direction are detected with the help of the detector aperture. In contrast with other methods, it has a much more relaxed requirement for the source size (it works with source sizes up to 100 mum). A working prototype coded-aperture system has been built. An x-ray detector with directly deposited columnar CsI has been used to minimize signal spill-over into neighboring pixels. Phase contrast images obtained with the system have demonstrated its effectiveness for imaging low-absorption materials.
Uploads
Papers by Peter Munro