Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Nikonov Stanislav

    Previously, we showed that transient inhibition of TGF- β1 resulted in correction of key aspects of diabetes-induced CD34(+) cell dysfunction. In this report, we examine the effect of transient inhibition of plasminogen activator... more
    Previously, we showed that transient inhibition of TGF- β1 resulted in correction of key aspects of diabetes-induced CD34(+) cell dysfunction. In this report, we examine the effect of transient inhibition of plasminogen activator inhibitor-1 (PAI-1), a major gene target of TGF-β1 activation. Using gene array studies, we examined CD34(+) cells isolated from a cohort of longstanding diabetic individuals, free of microvascular complications despite suboptimal glycemic control, and found that the cells exhibited reduced transcripts of both TGF-β1 and PAI-1 compared to age, sex, and degree of glycemic control-matched diabetic individuals with microvascular complications. CD34(+) cells from diabetic subjects with microvascular complications consistently exhibited higher PAI-1 mRNA than age-matched non-diabetic controls. TGF- β1 phosphorodiamidate morpholino oligo (PMO) reduced PAI-1 mRNA in diabetic (p<0.01) and non-diabetic (p=0.05) CD34(+) cells. To reduce PAI-1 in human CD34(+) cells, we utilized PAI-1 siRNA, lentivirus expressing PAI-1 shRNA or PAI-1 PMO. We found that inhibition of PAI-1 promoted CD34(+) cell proliferation and migration in vitro, likely through increased PI3(K) activity and increased cGMP production. Using a retinal ischemia reperfusion injury model in mice, we observed that recruitment of diabetic CD34(+) cells to injured acellular retinal capillaries was greater after PAI-1-PMO treatment compared with control PMO-treated cells. Targeting PAI-1 offers a promising therapeutic strategy for restoring vascular reparative function in defective diabetic progenitors.
    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's... more
    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD) and cause both autosomal dominant familial and sporadic PD. Currently, the physiological and pathogenic activities of LRRK2 are poorly understood. To decipher the biological functions of LRRK2, including the genes and pathways modulated by LRRK2 kinase activity in vivo, we assayed genome-wide mRNA expression in the brain and peripheral tissues from LRRK2 knockout (KO) and kinase hyperactive G2019S (G2019S) transgenic mice. Subtle but significant differences in mRNA expression were observed relative to wild-type (WT) controls in the cortex, striatum and kidney of KO animals, but only in the striatum in the G2019S model. In contrast, robust, consistent and highly significant differences were identified by the direct comparison of KO and G2019S profiles in the cortex, striatum, kidney and muscle, indicating opposite effects on mRNA expression by the two models relative to WT. Ribosomal and glycolytic biological functions were consistently and significantly up-regulated in LRRK2 G2019S compared with LRRK2 KO tissues. Genes involved in membrane-bound organelles, oxidative phosphorylation, mRNA processing and the endoplasmic reticulum were down-regulated in LRRK2 G2019S mice compared with KO. We confirmed the expression patterns of 35 LRRK2-regulated genes using quantitative reverse transcription polymerase chain reaction. These findings provide the first description of the transcriptional responses to genetically modified LRRK2 activity and provide preclinical target engagement and/or pharmacodynamic biomarker strategies for LRRK2 and may inform future therapeutic strategies for LRRK2-associated PD.