Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Justin Page

    Genome read categorization determines the genome of origin for sequence reads from an allopolyploid organism. Different techniques have been used to perform read categorization, mostly based on homoeo-SNPs identified between extant... more
    Genome read categorization determines the genome of origin for sequence reads from an allopolyploid organism. Different techniques have been used to perform read categorization, mostly based on homoeo-SNPs identified between extant diploid relatives of allopolyploids. We present a novel technique for read categorization implemented by the software PolyDog. We demonstrate its accuracy and improved categorization relative to other methods. We discuss the situations in which one method or another might be most appropriate.
    Read mapping is a fundamental part of next-generation genomic research but is complicated by genome duplication in many plants. Categorizing DNA sequence reads into their respective genomes enables current methods to analyze polyploid... more
    Read mapping is a fundamental part of next-generation genomic research but is complicated by genome duplication in many plants. Categorizing DNA sequence reads into their respective genomes enables current methods to analyze polyploid genomes as if they were diploid. We present PolyCat-a pipeline for mapping and categorizing all types of next-generation sequence data produced from allopolyploid organisms. PolyCat uses GSNAP's single-nucleotide polymorphism (SNP)-tolerant mapping to minimize the mapping efficiency bias caused by SNPs between genomes. PolyCat then uses SNPs between genomes to categorize reads according to their respective genomes. Bisulfite-treated reads have a significant reduction in nucleotide complexity because nucleotide conversion events are confounded with transition substitutions. PolyCat includes special provisions to properly handle bisulfite-treated data. We demonstrate the functionality of PolyCat on allotetraploid cotton, Gossypium hirsutum, and creat...
    ABSTRACT
    Rates of molecular evolution are highly variable within and among genes and among lineages. The forces responsible for this variation include a suite of internal genomic mechanisms (e.g., recombinational environment, repair efficiency)... more
    Rates of molecular evolution are highly variable within and among genes and among lineages. The forces responsible for this variation include a suite of internal genomic mechanisms (e.g., recombinational environment, repair efficiency) and external population level phenomena (e.g., selection, effective population size). A promising model for disentangling intrinsic and extrinsic forces are allopolyploid plants, which combine two (or more) set of homoeologous genes in a single nucleus and in the same ecological context. Thus, the null hypothesis may be tested that homoeologs will accumulate nucleotide diversity at equivalent rates in a set of populations within a species. Here we test this hypothesis using Gossypium hirsutum (cotton), a natural allopolyploid derived from the merger, 1-2 million years ago (MYA) of progenitor diploid genomes (A and D), which diverged from a common ancestor ~5-10 million years ago. Homoeologous chromosomes in the allopolyploid (AT and DtT remain highly ...
    [ Visit Client Website ...