The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-... more The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-antitoxin (TA) module, the first characterized functional TA system in Rhizobiaceae. Similarly to other bacterial TA systems, the toxin gene ntrR is preceded by and partially overlaps with the antitoxin gene ntrP. Based on protein homologies, the ntrPR operon belongs to the vapBC family of TA systems. The operon is negatively autoregulated by the NtrPNtrR complex. Promoter binding by NtrP is weak; stable complex formation also requires the presence of NtrR. The N-terminal part of NtrP is responsible for the interaction with promoter DNA, whereas the C-terminal part is required for protein-protein interactions. In the promoter region, a direct repeat sequence was identified as the binding site of the NtrPNtrR complex. NtrR expression resulted in the inhibition of cell growth and colony formation; this effect was counteracted by the presence of the antitoxin NtrP. These results and our earlier observations demonstrating a less effective downregulation of a wide range of symbiotic and metabolic functions in the ntrR mutant under microoxic conditions and an increased symbiotic efficiency with the host plant alfalfa suggest that the ntrPR module contributes to adjusting metabolic levels under symbiosis and other stressful conditions.
ABSTRACT The genome segment carrying the activities int and xis, responsible for integration and ... more ABSTRACT The genome segment carrying the activities int and xis, responsible for integration and excision of phage 16-3, have been identified and cloned. Mutants were isolated, permitting the investigation of int, xis and att sites (attP, attR, attB) in trans arrangements. The efficiency and role of int- and xis-promoted reactions and of homologous recombination in the formation of lysogenic cells are established. The possible use of the cloned int-attP chromosomal segment in the manipulation of Rhizobium meliloti is discussed.
Antlers of deer display the fastest and most robust bone development in the animal kingdom. Depos... more Antlers of deer display the fastest and most robust bone development in the animal kingdom. Deposition of the minerals in the cartilage preceding ossification is a specific feature of the developing antler. We have cloned 28 genes which are upregulated in the cartilaginous section (called mineralized cartilage) of the developing ("velvet") antler of red deer stags, compared to their levels in the fetal cartilage. Fifteen of these genes were further characterized by their expression pattern along the tissue zones (i.e., antler mesenchyme, precartilage, cartilage, bone), and by in situ hybridization of the gene activities at the cellular level. Expression dynamics of genes col1A1, col1A2, col3A1, ibsp, mgp, sparc, runx2, and osteocalcin were monitored and compared in the ossified part of the velvet antler and in the skeleton (in ribs and vertebrae). Expression levels of these genes in the ossified part of the velvet antler exceeded the skeletal levels 10-30-fold or more. Gene expression and comparative sequence analyses of cDNAs and the cognate 5' cis-regulatory regions in deer, cattle, and human suggested that the genes runx2 and osx have a master regulatory role. GC-MS metabolite analyses of glucose, phosphate, ethanolamine-phosphate, and hydroxyproline utilizations confirmed the high activity of mineralization genes in governing the flow of the minerals from the skeleton to the antler bone. Gene expression patterns and quantitative metabolite data for the robust bone development in the antler are discussed in an integrated manner. We also discuss the potential implication of our findings on the deer genes in human osteoporosis research.
Annual re-growth of deer antler represents a unique example of complete organ regeneration. Becau... more Annual re-growth of deer antler represents a unique example of complete organ regeneration. Because antler mesenchymal cells retain their embryonic capacity to develop into cartilage or bone, studying antler development provides a natural system to follow gene expression changes during mesenchymal differentiation toward chondrogenic/osteogenic lineage. To identify novel genes involved either in early events of mesenchymal cell specialization or in robust bone development, we have introduced a 3 K heterologous microarray set-up (deer cDNA versus mouse template). Fifteen genes were differentially expressed; genes for housekeeping, regulatory functions (components of different signaling pathways, including FGF, TGFbeta, Wnt), and genes encoding members of the Polycomb group were represented. Expression dynamics for genes are visualized by an expression logo. The expression profile of the gene C21orf70 of unknown function is described along with the effects when over-expressed; furthermore the nuclear localization of the cognate protein is shown. In this report, we demonstrate the particular advantage of the velvet antler model in bone research for: (1) identification of mesenchymal and precartilaginous genes and (2) targeting genes upregulated in robust cartilage development.
Deer antler regeneration is a uniquely intense and complex process, which involves chondrogenic a... more Deer antler regeneration is a uniquely intense and complex process, which involves chondrogenic and intramembranous ossification. Cell differentiation in the developing antler of red deer, Cervus elaphus, was characterized with extracellular matrix markers. Expression of the four matrilin genes was monitored by immunohistochemistry and in situ hybridization and compared to cartilage markers collagen II and cartilage link protein, the bone component collagen I, and the endothelial basement membrane constituent laminin. The mesenchyme layer at the very tip of the velvet antler was enriched in link protein, indicative of the role of hyaluronan in apical morphogenesis. Matrilin-2, formerly described as a component of hard and soft connective tissue matrices, was identified here also as a marker of cells with high differentiation potential: it is expressed predominantly by mesenchyme cells, prechondrocytes and preosteoblasts. In addition to matrilin-3, documented as a component of the bony extracellular matrix, expression of the other three matrilin genes was observed in osteoprogenitor cells and osteoblasts. A layer of presumed osteoprogenitor cells, which surrounded the perivascular channels, expressed all four matrilins and collagen I. As a consequence, all four matrilins, including matrilin-1, previously detected in the skeleton only in cartilage, were found associated to collagen I-rich structures in a thin layer bordering the columns of hypertrophic chondrocytes. Cells with similar morphology and expression pattern were identified in the periosteum. Altogether all cell types of the chondrogenic and osteogenic lineage that expressed the four matrilins were in a separate study [Faucheux, C., Nicholls, B.M., Allen, S., Danks, J.A, Horton, M.A., Price, J.S., 2004. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler. Dev. Dyn. 231, 88-97] positive for parathyroid hormone-related peptide and its receptor.
A set of integrative 'promoter probe' plasmids were constructed for both translat... more A set of integrative 'promoter probe' plasmids were constructed for both translational and transcriptional fusions. The vectors are based on the broad host range, low copy number plasmid pRK290 (IncPl) in which the attachment site of Rhizobium phage 16-3 and the lacZ gene of Escherichia coli were combined. The vectors integrate into the chromosome of Rhizobium meliloti, providing also the advantages of the single copy promoter probe cassettes. Thus they fulfil the prerequisite of the systems used for investigating gene regulation. The plasmids were applied for the study of the transcription regulation of the 16-3 phage. Their versatile use is also demonstrated.
The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-... more The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-antitoxin (TA) module, the first characterized functional TA system in Rhizobiaceae. Similarly to other bacterial TA systems, the toxin gene ntrR is preceded by and partially overlaps with the antitoxin gene ntrP. Based on protein homologies, the ntrPR operon belongs to the vapBC family of TA systems. The operon is negatively autoregulated by the NtrPNtrR complex. Promoter binding by NtrP is weak; stable complex formation also requires the presence of NtrR. The N-terminal part of NtrP is responsible for the interaction with promoter DNA, whereas the C-terminal part is required for protein-protein interactions. In the promoter region, a direct repeat sequence was identified as the binding site of the NtrPNtrR complex. NtrR expression resulted in the inhibition of cell growth and colony formation; this effect was counteracted by the presence of the antitoxin NtrP. These results and our earlier observations demonstrating a less effective downregulation of a wide range of symbiotic and metabolic functions in the ntrR mutant under microoxic conditions and an increased symbiotic efficiency with the host plant alfalfa suggest that the ntrPR module contributes to adjusting metabolic levels under symbiosis and other stressful conditions.
ABSTRACT The genome segment carrying the activities int and xis, responsible for integration and ... more ABSTRACT The genome segment carrying the activities int and xis, responsible for integration and excision of phage 16-3, have been identified and cloned. Mutants were isolated, permitting the investigation of int, xis and att sites (attP, attR, attB) in trans arrangements. The efficiency and role of int- and xis-promoted reactions and of homologous recombination in the formation of lysogenic cells are established. The possible use of the cloned int-attP chromosomal segment in the manipulation of Rhizobium meliloti is discussed.
Antlers of deer display the fastest and most robust bone development in the animal kingdom. Depos... more Antlers of deer display the fastest and most robust bone development in the animal kingdom. Deposition of the minerals in the cartilage preceding ossification is a specific feature of the developing antler. We have cloned 28 genes which are upregulated in the cartilaginous section (called mineralized cartilage) of the developing ("velvet") antler of red deer stags, compared to their levels in the fetal cartilage. Fifteen of these genes were further characterized by their expression pattern along the tissue zones (i.e., antler mesenchyme, precartilage, cartilage, bone), and by in situ hybridization of the gene activities at the cellular level. Expression dynamics of genes col1A1, col1A2, col3A1, ibsp, mgp, sparc, runx2, and osteocalcin were monitored and compared in the ossified part of the velvet antler and in the skeleton (in ribs and vertebrae). Expression levels of these genes in the ossified part of the velvet antler exceeded the skeletal levels 10-30-fold or more. Gene expression and comparative sequence analyses of cDNAs and the cognate 5' cis-regulatory regions in deer, cattle, and human suggested that the genes runx2 and osx have a master regulatory role. GC-MS metabolite analyses of glucose, phosphate, ethanolamine-phosphate, and hydroxyproline utilizations confirmed the high activity of mineralization genes in governing the flow of the minerals from the skeleton to the antler bone. Gene expression patterns and quantitative metabolite data for the robust bone development in the antler are discussed in an integrated manner. We also discuss the potential implication of our findings on the deer genes in human osteoporosis research.
Annual re-growth of deer antler represents a unique example of complete organ regeneration. Becau... more Annual re-growth of deer antler represents a unique example of complete organ regeneration. Because antler mesenchymal cells retain their embryonic capacity to develop into cartilage or bone, studying antler development provides a natural system to follow gene expression changes during mesenchymal differentiation toward chondrogenic/osteogenic lineage. To identify novel genes involved either in early events of mesenchymal cell specialization or in robust bone development, we have introduced a 3 K heterologous microarray set-up (deer cDNA versus mouse template). Fifteen genes were differentially expressed; genes for housekeeping, regulatory functions (components of different signaling pathways, including FGF, TGFbeta, Wnt), and genes encoding members of the Polycomb group were represented. Expression dynamics for genes are visualized by an expression logo. The expression profile of the gene C21orf70 of unknown function is described along with the effects when over-expressed; furthermore the nuclear localization of the cognate protein is shown. In this report, we demonstrate the particular advantage of the velvet antler model in bone research for: (1) identification of mesenchymal and precartilaginous genes and (2) targeting genes upregulated in robust cartilage development.
Deer antler regeneration is a uniquely intense and complex process, which involves chondrogenic a... more Deer antler regeneration is a uniquely intense and complex process, which involves chondrogenic and intramembranous ossification. Cell differentiation in the developing antler of red deer, Cervus elaphus, was characterized with extracellular matrix markers. Expression of the four matrilin genes was monitored by immunohistochemistry and in situ hybridization and compared to cartilage markers collagen II and cartilage link protein, the bone component collagen I, and the endothelial basement membrane constituent laminin. The mesenchyme layer at the very tip of the velvet antler was enriched in link protein, indicative of the role of hyaluronan in apical morphogenesis. Matrilin-2, formerly described as a component of hard and soft connective tissue matrices, was identified here also as a marker of cells with high differentiation potential: it is expressed predominantly by mesenchyme cells, prechondrocytes and preosteoblasts. In addition to matrilin-3, documented as a component of the bony extracellular matrix, expression of the other three matrilin genes was observed in osteoprogenitor cells and osteoblasts. A layer of presumed osteoprogenitor cells, which surrounded the perivascular channels, expressed all four matrilins and collagen I. As a consequence, all four matrilins, including matrilin-1, previously detected in the skeleton only in cartilage, were found associated to collagen I-rich structures in a thin layer bordering the columns of hypertrophic chondrocytes. Cells with similar morphology and expression pattern were identified in the periosteum. Altogether all cell types of the chondrogenic and osteogenic lineage that expressed the four matrilins were in a separate study [Faucheux, C., Nicholls, B.M., Allen, S., Danks, J.A, Horton, M.A., Price, J.S., 2004. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler. Dev. Dyn. 231, 88-97] positive for parathyroid hormone-related peptide and its receptor.
A set of integrative 'promoter probe' plasmids were constructed for both translat... more A set of integrative 'promoter probe' plasmids were constructed for both translational and transcriptional fusions. The vectors are based on the broad host range, low copy number plasmid pRK290 (IncPl) in which the attachment site of Rhizobium phage 16-3 and the lacZ gene of Escherichia coli were combined. The vectors integrate into the chromosome of Rhizobium meliloti, providing also the advantages of the single copy promoter probe cassettes. Thus they fulfil the prerequisite of the systems used for investigating gene regulation. The plasmids were applied for the study of the transcription regulation of the 16-3 phage. Their versatile use is also demonstrated.
Uploads
Papers by Péter Papp